首页> 外文期刊>Pattern recognition letters >A novel classification technique based on progressive transductive SVM learning
【24h】

A novel classification technique based on progressive transductive SVM learning

机译:基于渐进式SVM学习的新分类技术

获取原文
获取原文并翻译 | 示例

摘要

The existing semisupervised techniques based on progressive transductive support vector machine (PTSVM) iteratively select transductive samples that are closest to the SVM margin bounds. This may result in selecting wrong patterns (i.e., patterns that when included in the semisupervised learning can be associated with a wrong label) as transductive samples, especially when poor initial training sets are available or when available training samples are biased. To mitigate this problem, the proposed approach considers the distance from SVM margin bounds, the properties of the k-nearest neighbors approach, and the cluster assumption in the kernel space. To assess the effectiveness of the proposed method, we compared it with other PTSVM methods existing in the literature by using a toy data set and six real data sets. Experimental results confirmed the effectiveness of the proposed techniaue.
机译:基于渐进式转导支持向量机(PTSVM)的现有半监督技术可迭代地选择最接近SVM边界的转导样本。这可能会导致选择错误的模式(即当包含在半监督学习中时可能与错误的标签相关联的模式)作为转导样本,尤其是在初始训练集不可用或训练样本有偏见的情况下。为了缓解此问题,建议的方法考虑了与SVM边界的距离,k最近邻方法的属性以及内核空间中的聚类假设。为了评估该方法的有效性,我们通过使用玩具数据集和六个真实数据集将其与文献中存在的其他PTSVM方法进行了比较。实验结果证实了所提出技术的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号