首页> 外文期刊>Pattern recognition letters >Similar handwritten Chinese character recognition by kernel discriminative locality alignment
【24h】

Similar handwritten Chinese character recognition by kernel discriminative locality alignment

机译:基于核判别局部对齐的相似手写汉字识别

获取原文
获取原文并翻译 | 示例

摘要

It is essential to extract the discriminative information for similar handwritten Chinese character recognition (SHCCR) that plays a key role to improve the performance of handwritten Chinese character recognition. This paper first introduces a new manifold learning based subspace learning algorithm, discriminative locality alignment (DLA), to SHCCR. Afterward, we propose the kernel version of DLA, kernel discriminative locality alignment (KDLA), and carefully prove that learning KDLA is equal to conducting kernel principal component analysis (KPCA) followed by DLA. This theoretical investigation can be utilized to better understand KDLA, i.e., the subspace spanned by KDLA is essentially the subspace spanned by DLA on the principal components of KPCA. Experimental results demonstrate that DLA and KDLA are more effective than representative discriminative information extraction algorithms in terms of recognition accuracy.
机译:提取相似的手写汉字识别(SHCCR)的区别信息是至关重要的,它对于提高手写汉字识别的性能起着关键作用。本文首先向SHCCR介绍了一种新的基于流形学习的子空间学习算法,即判别性位置对齐(DLA)。之后,我们提出了DLA的内核版本,内核判别性局部对齐(KDLA),并仔细证明学习KDLA等同于进行DLA之后进行内核主成分分析(KPCA)。可以利用这一理论研究来更好地理解KDLA,即,由KDLA跨越的子空间本质上是在KPCA的主要组件上由DLA跨越的子空间。实验结果表明,在识别精度方面,DLA和KDLA比代表性的歧视性信息提取算法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号