首页> 外文期刊>Pattern recognition letters >Combining dynamic head pose-gaze mapping with the robot conversational state for attention recognition in human-robot interactions
【24h】

Combining dynamic head pose-gaze mapping with the robot conversational state for attention recognition in human-robot interactions

机译:将动态头部姿态凝视映射与机器人对话状态相结合,以在人机交互中识别注意力

获取原文
获取原文并翻译 | 示例

摘要

The ability to recognize the visual focus of attention (VFOA, i.e. what or whom a person is looking at) of people is important for robots or conversational agents interacting with multiple people, since it plays a key role in turn-taking, engagement or intention monitoring. As eye gaze estimation is often impossible to achieve, most systems currently rely on head pose as an approximation, creating ambiguities since the same head pose can be used to look at different VFOA targets. To address this challenge, we propose a dynamic Bayesian model for the VFOA recognition from head pose, where we make two main contributions. First, taking inspiration from behavioral models describing the relationships between the body, head and gaze orientations involved in gaze shifts, we propose novel gaze models that dynamically and more accurately predict the expected head orientation used for looking in a given gaze target direction. This is a neglected aspect of previous works but essential for recognition. Secondly, we propose to exploit the robot conversational state (when he speaks, objects to which he refers) as context to net appropriate priors on candidate VFOA targets and reduce the inherent VFOA ambiguities. Experiments on a public dataset where the humanoid robot NAO plays the role of an art guide and quiz master demonstrate the benefit of the two contributions. (C) 2014 Elsevier B.V. All rights reserved.
机译:识别人的视觉关注焦点(VFOA,即一个人正在看什么或看谁)的能力对于与多人互动的机器人或对话代理很重要,因为它在转弯,参与或意图中起关键作用监控。由于通常无法实现注视估计,因此当前大多数系统都以头姿势作为近似值,从而产生歧义,因为相同的头姿势可用于查看不同的VFOA目标。为了应对这一挑战,我们提出了一种动态的贝叶斯模型,用于从头部姿势识别VFOA,我们在其中做出了两个主要贡献。首先,从描述涉及凝视转移的身体,头部和凝视方向之间的关系的行为模型中汲取灵感,我们提出了新颖的凝视模型,该模型可以动态,更准确地预测用于在给定凝视目标方向上看待的预期头部方向。这是先前作品的一个被忽略的方面,但对于认可而言必不可少。其次,我们建议利用机器人的对话状态(当他讲话时,他所指的对象)作为上下文,以在候选VFOA目标上获得适当的先验,从而减少固有的VFOA模糊性。在人形机器人NAO充当美术指导和测验大师的角色的公共数据集上进行的实验证明了这两个贡献的好处。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号