首页> 外文期刊>Pattern recognition letters >Graph Edit Distance: Moving from global to local structure to solve the graph-matching problem
【24h】

Graph Edit Distance: Moving from global to local structure to solve the graph-matching problem

机译:图形编辑距离:从全局结构转到局部结构以解决图形匹配问题

获取原文
获取原文并翻译 | 示例

摘要

Classical graph approaches for pattern recognition applications rely on computing distances between graphs in a certain graph domain. That is, the distance between two graphs is obtained by directly optimising some objective function, which consider node and edge attributes. Bipartite Graph Matching was first published in a journal in 2009 and new versions have appeared to speed up its runtime such as the Fast Bipartite Graph Matching. This algorithm is based on defining a cost matrix between the whole nodes of both graphs and solving the node correspondence through a linear assignment method. To construct the matrix, several local structures can be defined from the simplest one (only the node) to the most complex (a whole clique or eigenvector structure). In this paper, we propose eight different options and we show that the type of local structure and the distance defined between these structures is relevant for the runtime and classification ratio. (C) 2015 Elsevier B.V. All rights reserved.
机译:用于模式识别应用程序的经典图形方法依赖于计算某个图形域中图形之间的距离。也就是说,两个图之间的距离是通过直接优化一些考虑了节点和边属性的目标函数而获得的。 Bipartite Graph Matching最早于2009年发表在期刊上,并且出现了新版本以加快其运行速度,例如Fast Bipartite Graph Matching。该算法基于定义两个图的整个节点之间的成本矩阵,并通过线性分配方法求解节点对应关系。为了构造矩阵,可以定义几个局部结构,从最简单的结构(仅是节点)到最复杂的结构(整个团或特征向量结构)。在本文中,我们提出了八个不同的选择,并且我们证明了局部结构的类型以及这些结构之间定义的距离与运行时间和分类比率有关。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号