首页> 外文期刊>Pattern recognition letters >Dominant local binary patterns for texture classification: Labelled or unlabelled?
【24h】

Dominant local binary patterns for texture classification: Labelled or unlabelled?

机译:用于纹理分类的主要局部二进制模式:带标签还是无标签?

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the problem of learning sets of discriminative patterns from local binary patterns (LBP). Such patterns are usually referred to as 'dominant local binary patterns (DLBP). The strategies to obtain the dominant patterns may either keep knowledge of the patterns labels or discard it. It is the aim of this work to determine which is the best option. To this end the paper studies the effectiveness of different strategies in terms of accuracy, data compression ratio and time complexity. The results show that DLBP provides a significant compression rate with only a slight accuracy decrease with respect to LBP, and that retaining information about the patterns' labels improves the discrimination capability of DLBP. Theoretical analysis of time complexity revealed that the gain/loss provided by DLBP vs. LBP depends On the classification strategy: we show that, asymptotically, there is in principle no advantage when classification is based on computationally-cheap methods (such as nearest neighbour and nearest mean classifiers), because in this case determining the dominant patterns is computationally more expensive than classifying using the whole feature vector; by contrast, pattern selection can be beneficial with more complex classifiers such as support vector machines. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文研究了从局部二进制模式(LBP)中学习判别模式集的问题。这样的模式通常称为“显性本地二进制模式(DLBP)”。获取主导模式的策略可以保留模式标签的知识,也可以将其丢弃。这项工作的目的是确定哪个是最佳选择。为此,本文在准确性,数据压缩率和时间复杂度方面研究了不同策略的有效性。结果表明,相对于LBP,DLBP提供了显着的压缩率,而准确性仅略有下降,并且保留有关图案标签的信息可提高DLBP的辨别能力。时间复杂度的理论分析表明,DLBP与LBP所提供的收益/损失取决于分类策略:我们证明,渐近地,从原理上讲,当分类基于计算便宜的方法(例如最近邻方法和近邻方法)时,没有优势。最接近的平均分类器),因为在这种情况下,确定优势模式比使用整个特征向量进行分类要昂贵得多;相反,模式选择对支持向量机等更复杂的分类器可能是有益的。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号