首页> 外文期刊>Pattern recognition letters >Precise Euclidean distance transforms in 3D from voxel coverage representation
【24h】

Precise Euclidean distance transforms in 3D from voxel coverage representation

机译:从体素覆盖率表示以3D进行精确的欧几里得距离转换

获取原文
获取原文并翻译 | 示例

摘要

Distance transforms (DTs) are, usually, defined on a binary image as a mapping from each background element to the distance between its centre and the centre of the closest object element. However, due to discretization effects, such DTs have limited precision, including reduced rotational and translational invariance. We show in this paper that a significant improvement in performance of Euclidean DTs can be achieved if voxel coverage values are utilized and the position of an object boundary is estimated with sub-voxel precision. We propose two algorithms of linear time complexity for estimating Euclidean DT with sub-voxel precision. The evaluation confirms that both algorithms provide 4-14 times increased accuracy compared to what is achievable from a binary object representation. (C) 2015 Elsevier B.V. All rights reserved.
机译:通常,在二进制图像上将距离变换(DT)定义为从每个背景元素到其中心与最近的对象元素的中心之间的距离的映射。但是,由于离散效应,此类DT的精度有限,包括减小的旋转和平移不变性。我们在本文中表明,如果利用体素覆盖值并以亚体素精度估计对象边界的位置,则可以实现欧氏DT的性能显着提高。我们提出了两种线性时间复杂度算法,用于以亚体素精度估算欧几里得DT。评估结果证实,与从二进制对象表示中获得的算法相比,这两种算法均提供了4-14倍的准确性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号