首页> 外文期刊>Pattern recognition letters >Multi-part body segmentation based on depth maps for soft biometry analysis
【24h】

Multi-part body segmentation based on depth maps for soft biometry analysis

机译:基于深度图的多部分身体分割,用于软生物分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel method extracting biometric measures using depth sensors. Given a multi part labeled training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circumference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random forest approach without requiring large training data. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文提出了一种使用深度传感器提取生物特征度量的新方法。给定一个由多个部分组成的训练数据,新主体将与数据集的最佳模型对齐,并计算诸如肢体和身体的长度或圆周大小之类的软生物特征。该过程是通过训练相关的姿势群集,定义代表性模型并将3D形状上下文描述符拟合到迭代匹配过程中来执行的。通过将正交板应用于车身,我们展示了强大的措施。我们在新颖的全身RGB深度数据集中测试了我们的方法,与不需要大量训练数据的随机森林方法相比,该方法显示了对软生物特征的准确估计以及更好的分割精度。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号