首页> 外文期刊>Pattern recognition letters >A Hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation
【24h】

A Hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation

机译:基于汉明距离的二进制粒子群算法(HDBPSO)用于高维特征选择,分类和验证

获取原文
获取原文并翻译 | 示例

摘要

Gene expression data typically contain fewer samples (as each experiment is costly) and thousands of expression values (or features) captured by automatic robotic devices. Feature selection is one of the important and challenging tasks for this kind of data where many traditional methods failed and evolutionary based methods were succeeded. In this study, the initial datasets are preprocessed using a quartile based fast heuristic technique to reduce the crude domain features which are less relevant in categorizing the samples of either group. Hamming distance is introduced as a proximity measure to update the velocity of particle(s) in binary PSO framework to select the important feature subsets. The experimental results on three benchmark datasets vis-a-vis colon cancer, defused B-cell lymphoma and leukemia data are evaluated by means of classification accuracies and validity indices as well. Detailed comparative studies are also made to show the superiority and effectiveness of the proposed method. The present study clearly reveals that by choosing proper preprocessing method, fine tuned by HDBPSO with Hamming distance as a proximity measure, it is possible to find important feature subsets in gene expression data with better and competitive performances.
机译:基因表达数据通常包含较少的样本(因为每个实验的成本很高),以及自动机器人设备捕获的数千个表达值(或特征)。对于许多传统方法都失败而成功的基于进化的方法而言,特征选择是这类数据的重要且具有挑战性的任务之一。在这项研究中,使用基于四分位数的快速启发式技术对初始数据集进行预处理,以减少与任意一组样本的分类无关的原始域特征。引入汉明距离作为一种接近性度量,以更新二进制PSO框架中粒子的速度以选择重要的特征子集。还通过分类准确性和有效性指标评估了三个基准数据集相对于结肠癌,融合的B细胞淋巴瘤和白血病数据的实验结果。还进行了详细的比较研究,以显示该方法的优越性和有效性。本研究清楚地表明,通过选择适当的预处理方法,并通过以汉明距离作为接近度的HDBPSO进行微调,可以在基因表达数据中找到具有更好和竞争性能的重要特征子集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号