首页> 外文期刊>Pattern recognition letters >Multiple circle detection based on center-based clustering
【24h】

Multiple circle detection based on center-based clustering

机译:基于中心聚类的多圆检测

获取原文
获取原文并翻译 | 示例

摘要

The multiple circle detection problem has been considered in the paper on the basis of given data point set A is contained in K~2. It is supposed that all data points from the set A come from k circles that should be reconstructed or detected. The problem has been solved by the application of center-based clustering of the set A, i.e. an optimal k-partition is searched for, whose clusters are determined by corresponding circle-centers. Thereby, the algebraic distance from a point to the circle is used. First, an adaptation of the well-known k-means algorithm is given in the paper. Also, the incremental algorithm for searching for an approximate globally optimal k-partition is proposed. The algorithm locates either a globally optimal k-partition or a locally optimal k-partition close to the global one. Since optimal partitions with 2,3,... clusters are determined successively in the algorithm, several well-known indexes for determining an appropriate number of clusters in a partition are adopted for this case. Thereby, the Hausdorff distance between two circles is used and adopted. The proposed method and algorithm are illustrated and tested on several numerical examples.
机译:在给定的数据点集A包含在K〜2中的基础上,已经考虑了多圆检测问题。假定来自集合A的所有数据点都来自应该重建或检测的k个圆。该问题已经通过应用集合A的基于中心的聚类来解决,即,搜索最优的k分区,其最优聚类由相应的圆心确定。因此,使用了从点到圆的代数距离。首先,给出了著名的k-means算法的一种适应方法。此外,提出了一种用于搜索近似全局最优k分区的增量算法。该算法定位全局最优的k分区或接近全局最优的k分区。由于在该算法中依次确定了具有2,3,...个簇的最佳分区,因此在这种情况下,采用了几个众所周知的指标来确定一个分区中适当数量的簇。因此,使用并采用了两个圆之间的Hausdorff距离。所提出的方法和算法在几个数值示例上进行了说明和测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号