首页> 外文期刊>Image Processing, IET >Keypoints based enhanced multiple copy-move forgeries detection system using density-based spatial clustering of application with noise clustering algorithm
【24h】

Keypoints based enhanced multiple copy-move forgeries detection system using density-based spatial clustering of application with noise clustering algorithm

机译:使用基于密度的应用程序空间聚类和噪声聚类算法的基于关键点的增强型多重复制伪造品检测系统

获取原文
获取原文并翻译 | 示例

摘要

In this study, the problem of detecting if an image has tampered is inquired; especially, the attention has been paid to the case in which the portion of an image is copied and then pasted onto another region to create a duplication or to hide some important portion of the image. The proposed copy-move forgery detection system is based on the scale-invariant feature transform (SIFT) features extraction and density-based clustering algorithm. The extracted SIFT features are matched using the generalised two nearest neighbours (2NN) procedure. Thereafter, the density-based clustering algorithm is utilised to improve the detection results. The proposed system is tested using MICC-F220, MICC-F2000 and MICC-F8multi datasets. Due to the generalised 2NN matching procedure, the proposed system is able to detect multiple forgeries present in the image. Experimental results show that the performance of the system is quite satisfactory in terms of computational time as well as detection accuracy.
机译:在这项研究中,询问了检测图像是否被篡改的问题。特别地,已经关注了以下情况:复制图像的一部分,然后将其粘贴到另一个区域以创建副本或隐藏图像的某些重要部分。拟议的复制移动伪造检测系统基于尺度不变特征变换(SIFT)特征提取和基于密度的聚类算法。使用广义两个最近邻(2NN)过程对提取的SIFT特征进行匹配。此后,基于密度的聚类算法被用来改善检测结果。使用MICC-F220,MICC-F2000和MICC-F8multi数据集对提出的系统进行了测试。由于采用了通用的2NN匹配程序,因此所提出的系统能够检测图像中存在的多个伪造品。实验结果表明,该系统的性能在计算时间和检测精度上都令人满意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号