首页> 外文期刊>Pattern recognition letters >Feature representation of RGB-D images using joint spatial-depth feature pooling
【24h】

Feature representation of RGB-D images using joint spatial-depth feature pooling

机译:使用联合空间深度特征池的RGB-D图像特征表示

获取原文
获取原文并翻译 | 示例

摘要

Recent development in depth imaging technology makes acquisition of depth information easier. With the additional depth cue, RGB-D cameras can provide effective support for many RGB-D perception tasks beyond traditional RGB information. However, current feature representation based on RGB-D images utilizes depth information only to extract local features, without considering it to improve robustness and discriminability of the feature representation by merging depth cues into feature pooling. Spatial pyramid model (SPM) has become the standard protocol to split a 2D image plane into sub-regions for feature pooling of RGB-D images. We argue that SPM may not be the optimal pooling scheme for RGB-D images, as it only pools features spatially and completely discards their depth topological structures. Instead, we propose a novel joint spatial-depth pooling (JSDP) scheme which further partitions SPM using the depth cue and pools features simultaneously in 2D image plane and along the depth direction. By combining the JSDP with standard feature extraction and feature encoding modules, we outperform state-of-the-art methods on benchmarks for RGB-D object classification, detection and scene recognition. (C) 2016 Elsevier B.V. All rights reserved.
机译:深度成像技术的最新发展使深度信息的获取更加容易。借助附加的深度提示,RGB-D摄像机可以为传统RGB信息以外的许多RGB-D感知任务提供有效的支持。但是,当前基于RGB-D图像的特征表示仅利用深度信息来提取局部特征,而没有考虑通过将深度线索合并到特征池中来提高特征表示的鲁棒性和可分辨性。空间金字塔模型(SPM)已成为将2D图像平面划分为用于RGB-D图像特征库的子区域的标准协议。我们认为,SPM可能不是RGB-D图像的最佳合并方案,因为它仅在空间上合并特征并完全丢弃其深度拓扑结构。相反,我们提出了一种新颖的联合空间深度池(JSDP)方案,该方案进一步使用深度提示对SPM进行分区,并同时在2D图像平面和沿深度方向合并池特征。通过将JSDP与标准特征提取和特征编码模块结合在一起,我们在RGB-D对象分类,检测和场景识别的基准上表现出了最先进的方法。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号