首页> 外文期刊>Pattern recognition letters >A comparative study of data fusion for RGB-D based visual recognition
【24h】

A comparative study of data fusion for RGB-D based visual recognition

机译:基于RGB-D的视觉识别数据融合的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Data fusion from different modalities has been extensively studied for a better understanding of multimedia contents. On one hand, the emergence of new devices and decreasing storage costs cause growing amounts of data being collected. Though bigger data makes it easier to mine information, methods for big data analytics are not well investigated. On the other hand, new machine learning techniques, such as deep learning, have been shown to be one of the key elements in achieving state-of-the-art inference performances in a variety of applications. Therefore, some of the old questions in data fusion are in need to be addressed again for these new changes. These questions are: What is the most effective way to combine data for various modalities? Does the fusion method affect the performance with different classifiers? To answer these questions, in this paper, we present a comparative study for evaluating early and late fusion schemes with several types of SVM and deep learning classifiers on two challenging RGB-D based visual recognition tasks: hand gesture recognition and generic object recognition. The findings from this study provide useful policy and practical guidance for the development of visual recognition systems. (C) 2015 Elsevier B.V. All rights reserved.
机译:为了更好地理解多媒体内容,已经广泛研究了来自不同形式的数据融合。一方面,新设备的出现和存储成本的下降导致收集的数据量不断增长。尽管更大的数据可以更轻松地挖掘信息,但是尚未很好地研究大数据分析的方法。另一方面,新的机器学习技术(例如深度学习)已被证明是在各种应用中实现最新推理性能的关键要素之一。因此,对于这些新变化,需要再次解决数据融合中的一些旧问题。这些问题是:结合各种方式的数据的最有效方法是什么?融合方法是否会影响不同分类器的性能?为了回答这些问题,在本文中,我们提出了一项比较研究,用于评估基于两种具有挑战性的RGB-D视觉识别任务的几种类型的SVM和深度学习分类器的早期和晚期融合方案:手势识别和通用对象识别。这项研究的发现为视觉识别系统的发展提供了有用的政策和实践指导。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2016年第1期|1-6|共6页
  • 作者单位

    Acad Sinica, MCLab, Res Ctr Informat Technol Innovat CITI, Taipei 115, Taiwan;

    Natl Taiwan Univ Sci & Technol, CSIE, Taipei 106, Taiwan;

    Acad Sinica, MCLab, Res Ctr Informat Technol Innovat CITI, Taipei 115, Taiwan|Natl Taiwan Univ Sci & Technol, CSIE, Taipei 106, Taiwan;

    Acad Sinica, MCLab, Res Ctr Informat Technol Innovat CITI, Taipei 115, Taiwan;

    Acad Sinica, MCLab, Res Ctr Informat Technol Innovat CITI, Taipei 115, Taiwan|Natl Taiwan Univ Sci & Technol, CSIE, Taipei 106, Taiwan;

    Acad Sinica, MCLab, Res Ctr Informat Technol Innovat CITI, Taipei 115, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    RGB-D; Fusion; CNN; DBN; SAE; SVM;

    机译:RGB-D;融合;CNN;DBN;SAE;SVM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号