首页> 外文期刊>Pattern recognition letters >Enhancement of the Box-Counting Algorithm for fractal dimension estimation
【24h】

Enhancement of the Box-Counting Algorithm for fractal dimension estimation

机译:分形维估计盒计数算法的增强

获取原文
获取原文并翻译 | 示例

摘要

The box-counting (BC) method is frequently used as a measure of irregularity and roughness of fractals with self-similarity property due to its simplicity and high reliability. It requires a proper choice of the number of box sizes, corresponding sizes, and size limits to guarantee the accuracy of the fractal dimension estimation. Most of the existing BC methods utilize the geometric-step method, which causes a lack of fitting data points and wasted pixels for images of large size and/ or arbitrary size. This paper presents a BC algorithm in combination with a novel sampling method and fractional box-counting method which will allow us to overcome some of limitations evident in the conventional BC method. The new sampling method introduces a partial competition based on the coverage of box sizes and takes more number of box sizes than the geometric-step method. To circumvent the border problem occurring for images of arbitrary size, the fractional box-counting method allows the number of the boxes to be real, rather than integer. To show its feasibility, the proposed method is applied to a set of fractal images of exactly known fractal dimension. (C) 2017 Elsevier B. V. All rights reserved.
机译:由于具有简单性和高可靠性,盒计数法通常被用作具有自相似性的分形的不规则性和粗糙度的度量。它需要适当选择盒子大小的数量,相应的大小和大小限制,以保证分形维数估计的准确性。现有的大多数BC方法都采用几何步长法,这导致缺乏合适的数据点,并且浪费了大尺寸和/或任意尺寸图像的像素。本文提出了一种结合新的采样方法和分数盒计数方法的BC算法,这将使我们克服传统BC方法中明显的局限性。新的抽样方法引入了基于盒子大小的局部竞争,并且比几何步长方法需要更多的盒子大小。为了避免出现任意尺寸图像的边界问题,分数盒计数方法允许盒的数量为实数,而不是整数。为了显示其可行性,将所提出的方法应用于一组完全已知的分形维数的分形图像。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号