首页> 外文期刊>Pattern recognition letters >Temporal weighted learning model for background estimation with an automatic re-initialization stage and adaptive parameters update
【24h】

Temporal weighted learning model for background estimation with an automatic re-initialization stage and adaptive parameters update

机译:具有自动重新初始化阶段和自适应参数更新的用于背景估计的时间加权学习模型

获取原文
获取原文并翻译 | 示例

摘要

Background initialization and background update are two important stages considered in the design of most background modeling algorithms. Commonly, these algorithms implement strategies in which their parameters have a very high adaptability in the background initialization stage in order to learn all the variations of the background. Contrary, in the background update phase, these parameters adapt slowly, in most cases with an exponential decay. This paper presents the BE-AAPSA method which automatically determines if the background initialization and the background update need to be re-initialized. Re-initialization is triggered if the video scene presents high variations, allowing the background to be defined more accurately. BE-AAPSA is based on a previously developed system, where two adaptive background models based on weight arrays with temporal learning mechanism identify dynamic objects within a video scene. The system implements four independent modules to treat the different factors that affect a correct definition of the dynamic object. In BE-AAPSA, the objective is to create a robust background estimation model where the learning rates for each pixel are calculated according to the results of the two adaptive weight arrays and the module where the video is classified. This approach allows handling different strategies to update learning rates at a pixel resolution. BE-AAPSA is validated with the SBI and SBMnet video databases and with a video created by concatenating scenes of the video categories presented in the CDnet 2014 database. According to the findings, BE-AAPSA produced highly accurate results with SBI and SBMnet and surpassed state-of-the-art methods with the CDnet video. These results demonstrate the importance of using an automatic re-initialization scheme in the background initialization and background update stages when the video scene presents a major change or involves jittering. Furthermore, it shows the benefits of handling in separate modules the analysis of the background estimation results. (C) 2017 Elsevier B.V. All rights reserved.
机译:背景初始化和背景更新是大多数背景建模算法设计中考虑的两个重要阶段。通常,这些算法实施策略,其中它们的参数在后台初始化阶段具有很高的适应性,以便了解背景的所有变化。相反,在后台更新阶段,这些参数适应缓慢,在大多数情况下呈指数衰减。本文介绍了BE-AAPSA方法,该方法可自动确定是否需要重新初始化后台初始化和后台更新。如果视频场景呈现高变化,则会触发重新初始化,从而可以更准确地定义背景。 BE-AAPSA基于先前开发的系统,其中基于权重数组的两个自适应背景模型与时间学习机制一起识别视频场景中的动态对象。该系统实现四个独立的模块,以处理影响动态对象正确定义的不同因素。在BE-AAPSA中,目标是创建一个可靠的背景估计模型,其中根据两个自适应权重数组和视频分类模块的结果来计算每个像素的学习率。这种方法允许处理不同的策略以像素分辨率更新学习速率。 BE-AAPSA已通过SBI和SBMnet视频数据库以及通过将CDnet 2014数据库中呈现的视频类别的场景串联而成的视频进行了验证。根据调查结果,BE-AAPSA用SBI和SBMnet产生了非常准确的结果,而CDnet视频则超越了最新的方法。这些结果证明了当视频场景出现重大变化或涉及抖动时,在背景初始化和背景更新阶段中使用自动重新初始化方案的重要性。此外,它显示了在单独的模块中处理背景估计结果分析的好处。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号