首页> 外文期刊>Pattern recognition letters >Entropy based segmentation of tumor from brain MR images - a study with teaching learning based optimization
【24h】

Entropy based segmentation of tumor from brain MR images - a study with teaching learning based optimization

机译:基于熵的脑部MR图像肿瘤分割-基于教学学习的优化研究

获取原文
获取原文并翻译 | 示例

摘要

Image processing plays an important role in various medical applications to support the computerized disease examination. Brain tumor, such as glioma is one of the life threatening cancers in humans and the premature diagnosis will improve the survival rate. Magnetic Resonance Image (MRI) is the widely considered imaging practice to record the glioma for the clinical study. Due to its complexity and varied modality, brain MRI needs the automated assessment technique. In this paper, a novel methodology based on meta-heuristic optimization approach is proposed to assist the brain MRI examination. This approach enhances and extracts the tumor core and edema sector from the brain MRI integrating the Teaching Learning Based Optimization (TLBO), entropy value, and level set / active contour based segmentation. The proposed method is tested on the images acquired using the Flair, TIC and T2 modalities. The experimental work is implemented and is evaluated using the CEREBRIX and BRAINIX dataset. Further, TLBO assisted approach is validated on the MICCAI brain tumor segmentation (BRATS) challenge 2012 dataset and achieved better values of Jaccard index, dice co-efficient, precision, sensitivity, specificity and accuracy. Hence the proposed segmentation approach is clinically significant. (C) 2017 Elsevier B.V. All rights reserved.
机译:图像处理在各种医学应用中起着重要作用,以支持计算机疾病检查。脑瘤(例如神经胶质瘤)是威胁人类生命的癌症之一,过早诊断将提高生存率。磁共振成像(MRI)是记录胶质瘤用于临床研究的广泛考虑的成像方法。由于其复杂性和形式多样,大脑MRI需要自动评估技术。本文提出了一种基于元启发式优化方法的新方法来辅助脑部MRI检查。这种方法结合了基于教学的学习优化(TLBO),熵值和基于水平集/活动轮廓的分割,从大脑MRI增强并提取了肿瘤核心和水肿区。在使用Flair,TIC和T2模态采集的图像上测试了所提出的方法。实验工作已实现,并使用CEREBRIX和BRAINIX数据集进行了评估。此外,在MICCAI脑肿瘤分割(BRATS)挑战2012数据集上验证了TLBO辅助方法,并获得了Jaccard指数,骰子系数,精度,灵敏度,特异性和准确性更高的值。因此,提出的分割方法在临床上具有重要意义。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2017年第15期|87-95|共9页
  • 作者单位

    St Josephs Coll Engn, Old Mahabalipurain Rd, Madras 600119, Tamil Nadu, India;

    PVP Siddhartha Inst Technol, Vijayawada 520007, Andhra Pradesh, India;

    Sahyadri Coll Engn & Management, Mangalore 575007, Karnataka, India;

    St Josephs Coll Engn, Old Mahabalipurain Rd, Madras 600119, Tamil Nadu, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号