首页> 外文期刊>Pattern recognition letters >A professional estimate on the computed tomography brain, tumor images using SVM-SMO for classification and MRG-GWO for segmentation
【24h】

A professional estimate on the computed tomography brain, tumor images using SVM-SMO for classification and MRG-GWO for segmentation

机译:使用SVM-SMO进行分类并使用MRG-GWO进行分割的计算机断层扫描大脑,肿瘤图像的专业估计

获取原文
获取原文并翻译 | 示例

摘要

In many applications of image processing and computer vision, it is image segmentation that is widely used. The study of the Computed Tomography (CT) images considers image segmentation a very important and vital part in identifying the different kinds of tumor. The classification of the tumor and the non-tumor images followed by the segmentation of tumor region in CT images is done by the proposed methodology. The process of classifying is carried out by Support Vector Machine (SVM) with different kernel functions and optimization techniques. This SVM classifier with Sequential Minimal Optimization (SMO) is predominant over the other methodologies in the analysis of classification process. The segmentation process after the classification process is performed by the Modified Region Growing (MRG) with threshold optimization. As regards the threshold optimization, certain algorithms such as Harmony Search (HS), Evolutionary Programming (EP) and Grey Wolf Optimization (GWO) are made use of. It is with the aid of a wide set of performance measures that the results are demonstrated. The comparative analysis in terms of sensitivity, specificity and accuracy is done for the optimization techniques said supra. An accuracy rate of 99.05% in the analysis of segmentation process is obtained using the GWO technique. It is in the working platform of MATLAB that this proposed methodology is implemented. The experimental results obtained depict that the proposed methodology (MRG-GWO) enjoys high accuracy with enhanced tumor detection in total contrast to the other two techniques (HS and EP) in comparison. (C) 2017 Elsevier B.V. All rights reserved.
机译:在图像处理和计算机视觉的许多应用中,广泛使用的是图像分割。对计算机断层扫描(CT)图像的研究认为,图像分割是识别不同类型肿瘤的非常重要且至关重要的部分。通过所提出的方法对肿瘤和非肿瘤图像进行分类,然后在CT图像中对肿瘤区域进行分割。分类过程由支持向量机(SVM)使用不同的内核功能和优化技术进行。在分类过程的分析中,具有顺序最小优化(SMO)的SVM分类器优于其他方法。通过具有阈值优化的改进区域增长(MRG)在分类过程之后执行分割过程。关于阈值优化,利用了诸如和声搜索(HS),进化规划(EP)和灰狼优化(GWO)之类的某些算法。借助于各种性能指标来证明结果。针对上述优化技术进行了敏感性,特异性和准确性方面的比较分析。使用GWO技术在分割过程分析中的准确率为99.05%。所提出的方法是在MATLAB的工作平台中实现的。获得的实验结果表明,与其他两种技术(HS和EP)相比,所提出的方法(MRG-GWO)在增强的肿瘤检测方面具有很高的准确性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号