首页> 外文期刊>Image Processing, IET >Wavelet statistical texture features-based segmentation and classification of brain computed tomography images
【24h】

Wavelet statistical texture features-based segmentation and classification of brain computed tomography images

机译:基于小波统计纹理特征的脑计算机断层扫描图像分割和分类

获取原文
获取原文并翻译 | 示例

摘要

A computer software system is designed for segmentation and classification of benign and malignant tumour slices in brain computed tomography images. In this study, the authors present a method to select both dominant run length and cooccurrence texture features of wavelet approximation tumour region of each slice to be segmented by a support vector machine (SVM). Two-dimensional discrete wavelet decomposition is performed on the tumour image to remove the noise. The images considered for this study belong to 208 tumour slices. Seventeen features are extracted and six features are selected using Student's t-test. This study constructed the SVM and probabilistic neural network (PNN) classifiers with the selected features. The classification accuracy of both classifiers are evaluated using the k fold cross validation method. The segmentation results are also compared with the experienced radiologist ground truth. Quantitative analysis between ground truth and the segmented tumour is presented in terms of segmentation accuracy and segmentation error. The proposed system provides some newly found texture features have an important contribution in classifying tumour slices efficiently and accurately. The experimental results show that the proposed SVM classifier is able to achieve high segmentation and classification accuracy effectiveness as measured by sensitivity and specificity.
机译:设计了一种计算机软件系统,用于对脑计算机断层扫描图像中的良性和恶性肿瘤切片进行分割和分类。在这项研究中,作者提出了一种方法,用于选择要通过支持向量机(SVM)进行分割的每个切片的小波逼近肿瘤区域的主要游程长度和共现纹理特征。对肿瘤图像执行二维离散小波分解以去除噪声。本研究考虑的图像属于208个肿瘤切片。使用学生t检验提取了17个特征,并选择了6个特征。这项研究构建了具有所选功能的SVM和概率神经网络(PNN)分类器。使用k折交叉验证方法评估两个分类器的分类准确性。还将分割结果与经验丰富的放射科医生的地面真实情况进行比较。根据分割的准确性和分割的误差,对地面真相和分割的肿瘤之间的定量分析进行了介绍。所提出的系统提供了一些新发现的纹理特征,在有效且准确地对肿瘤切片进行分类中具有重要的贡献。实验结果表明,提出的支持向量机分类器能够通过敏感性和特异性来实现较高的分割和分类精度效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号