首页> 外文期刊>Pattern recognition letters >Numerically efficient algorithms for anisotropic scale and translation Tchebichef moment invariants
【24h】

Numerically efficient algorithms for anisotropic scale and translation Tchebichef moment invariants

机译:各向异性尺度和平移Tchebichef矩不变量的数值有效算法

获取原文
获取原文并翻译 | 示例

摘要

Anisotropic scale and translation invariants (ASTI) for Tchebichef moments have been proposed by Zhu et al. [27]. Since these invariants are derived via the decomposition of Tchebichef polynomials, it is unavoidable that the invariant algorithms inherit the complexities from the Tchebichef polynomials defined in terms of hypergeometric functions. Furthermore, in order to achieve anisotropic scale and translation invariance, the computation of translation invariants and scale invariants need to be performed sequentially. These have turned out to be the bottleneck for the invariant algorithms. Experimental results show that some of the computed ASTI features from symmetric patterns are less accurate. Thus, we would like to extend the work of Zhu et al. [27] to simplify the complexity of the algorithms and further improve the accuracy of the computed features. The three terms recurrence relation of the Tchebichef polynomials has been used to simplify and improve the computational efficiency of the invariant algorithms. Skew transformations are deployed to enhance the numerical accuracy of ASTI for Tchebhcief moments. Our studies show that the skewed features are less sensitive to noise and significantly enhance the accuracy of pattern recognition systems. This has been verified by the experiments on recognition of printed English letters and leaf patterns corrupted by noise and scaled and translated deformations. The simplification of the algorithms using the orthogonal property of basis functions also can be used to simplify more complex invariants like affine invariants of discrete Tchebichief moments. It can also be extended to derive invariants for other orthogonal based moments like Legendre moments, Krawtchouk moments, Hahn moments, etc. (C) 2017 Elsevier B.V. All rights reserved.
机译:Zhu等人已经提出了Tchebichef矩的各向异性尺度和平移不变性(ASTI)。 [27]。由于这些不变量是通过对Tchebichef多项式进行分解而得出的,因此不可避免的是,这些不变算法会继承根据超几何函数定义的Tchebichef多项式的复杂性。此外,为了实现各向异性尺度和平移不变性,需要顺序执行平移不变性和尺度不变性的计算。这些已成为不变算法的瓶颈。实验结果表明,根据对称模式计算出的一些ASTI特征不太准确。因此,我们想扩展Zhu等人的工作。 [27]简化了算法的复杂性,并进一步提高了计算特征的准确性。 Tchebichef多项式的三项递归关系已用于简化和提高不变算法的计算效率。部署了偏斜变换来提高Ache在Tchebhcief时刻的数值精度。我们的研究表明,偏斜特征对噪声的敏感度较低,并显着提高了模式识别系统的准确性。通过识别印刷的英文字母和树叶图案被噪声破坏,缩放和平移的变形的实验已证实了这一点。使用基函数的正交特性对算法进行简化也可以用于简化更复杂的不变量,例如离散Tchebichief矩的仿射不变量。它也可以扩展为派生其他​​基于正交的矩的不变量,例如勒让德矩,Krawtchouk矩,Hahn矩等。(C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号