首页> 外文期刊>Pattern recognition letters >Toward high-performance online HCCR: A CNN approach with DropDistortion, path signature and spatial stochastic max-pooling
【24h】

Toward high-performance online HCCR: A CNN approach with DropDistortion, path signature and spatial stochastic max-pooling

机译:迈向高性能在线HCCR:具有DropDistortion,路径签名和空间随机最大池的CNN方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an investigation of several techniques that increase the accuracy of online handwritten Chinese character recognition (HCCR). We propose a new training strategy named DropDistortion to train a deep convolutional neural network (DCNN) with distorted samples. DropDistortion gradually lowers the degree of character distortion during training, which allows the DCNN to better generalize. Path signature is used to extract effective features for online characters. Further improvement is achieved by employing spatial stochastic max-pooling as a method of feature map distortion and model averaging. Experiments were carried out on three publicly available datasets, namely CASIA-OLHWDB 1.0, CASIA-OLHWDB 1.1, and the ICDAR2013 online HCCR competition dataset. The proposed techniques yield state-of-the-art recognition accuracies of 97.67%, 97.30%, and 97.99%, respectively. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文介绍了几种可提高在线手写汉字识别(HCCR)准确性的技术。我们提出了一种名为DropDistortion的新训练策略,以训练具有失真样本的深度卷积神经网络(DCNN)。 DropDistortion逐渐降低了训练过程中字符失真的程度,这使DCNN可以更好地泛化。路径签名用于提取在线字符的有效功能。通过将空间随机最大池化用作特征图失真和模型平均的方法,可以实现进一步的改进。实验在三个公共可用的数据集上进行,分别是CASIA-OLHWDB 1.0,CASIA-OLHWDB 1.1和ICDAR2013在线HCCR比赛数据集。所提出的技术分别产生了97.67%,97.30%和97.99%的最新识别精度。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号