首页> 外文期刊>Pattern recognition letters >Motion intent recognition of individual fingers based on mechanomyogram
【24h】

Motion intent recognition of individual fingers based on mechanomyogram

机译:基于机电图的单个手指运动意图识别

获取原文
获取原文并翻译 | 示例

摘要

The mechanomyogram (MMG) signals detected from forearm muscle group contain abundant information which can be utilized to predict finger motion intention. Few works have been reported in this area especially for the recognition of individual finger motions, which however is crucial for many applications such as prosthesis control. In this paper, a MMG based finger gesture recognition system is designed to identify the motions of each finger. In this system, three kinds of feature sets, wavelet packet transform (WPT) coefficients, stationary wavelet transform (SWT) coefficients, and the time and frequency domain hybrid (TFDH) features, are adopted and processed by a support vector machine (SVM) classifier. The experimental results show that the average accuracy rates of recognition using the WPT, SWT and TFDH features are 91.64%, 94.31%, and 91.56%, respectively. Furthermore, the average rate of 95.20% can be achieved when above three feature sets are combined to use in the proposed recognition system. (C) 2017 Elsevier B.V. All rights reserved.
机译:从前臂肌肉群检测到的机械声图(MMG)信号包含大量信息,可用于预测手指的运动意图。在该领域,很少有文献报道特别是对于识别单个手指运动的研究,然而,这对于诸如假体控制的许多应用至关重要。在本文中,基于MMG的手指手势识别系统被设计为识别每个手指的运动。在该系统中,采用三种特征集,即小波包变换(WPT)系数,平稳小波变换(SWT)系数以及时频混合(TFDH)特征,并由支持向量机(SVM)处理分类器。实验结果表明,使用WPT,SWT和TFDH特征的平均识别准确率分别为91.64%,94.31%和91.56%。此外,将以上三个特征集组合用于建议的识别系统时,可以达到95.20%的平均比率。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2017年第1期|41-48|共8页
  • 作者单位

    Shenzhen Univ, Sch Biomed Engn, Guangdong Key Lab Biomed Measurements & Ultrasoun, 3688 Nanhai Ave, Shenzhen 518060, Peoples R China;

    Shenzhen Univ, Sch Biomed Engn, Guangdong Key Lab Biomed Measurements & Ultrasoun, 3688 Nanhai Ave, Shenzhen 518060, Peoples R China;

    Shenzhen Univ, Sch Biomed Engn, Guangdong Key Lab Biomed Measurements & Ultrasoun, 3688 Nanhai Ave, Shenzhen 518060, Peoples R China;

    Shenzhen Univ, Sch Biomed Engn, Guangdong Key Lab Biomed Measurements & Ultrasoun, 3688 Nanhai Ave, Shenzhen 518060, Peoples R China;

    Univ Konstanz, INCIDE Ctr, Constance, Germany;

    Shenzhen Univ, Sch Biomed Engn, Guangdong Key Lab Biomed Measurements & Ultrasoun, 3688 Nanhai Ave, Shenzhen 518060, Peoples R China|Shenzhen Inst Neurosci, Ctr Neurorehabil, Shenzhen 518057, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mechanomyogram; Inertial sensor; Finger gesture recognition; Motion intent; Feature extraction;

    机译:机电图;惯性传感器;手指手势识别;运动意图;特征提取;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号