首页> 外文期刊>Pattern recognition letters >Deep learning features exception for cross-season visual place recognition
【24h】

Deep learning features exception for cross-season visual place recognition

机译:深度学习具有跨季节视觉场所识别的例外功能

获取原文
获取原文并翻译 | 示例

摘要

The use of Convolutional Neural Networks (CNNs) in image analysis and recognition paved the way for long-term visual place recognition. The transferable power of generic descriptors extracted at different layers of off-the-shelf CNNs has been successfully exploited in various visual place recognition scenarios. In this paper we tackle this problem by extracting the full output of an intermediate layer and building an image descriptor of lower dimensionality by omitting the activation of filters corresponding to environmental changes. Thus, we are able to increase the robustness of the cross-season visual place recognition. We test our approach on the Nordland dataset, the biggest and the most challenging dataset up to date, where the included four seasons induce great illumination and appearance changes. The experiments show that our new approach can significantly increase, up to 14%, the baseline (single-image search) performance of deep features. (c) 2017 Elsevier B.V. All rights reserved.
机译:在图像分析和识别中使用卷积神经网络(CNN)为长期的视觉位置识别铺平了道路。在现成的CNN的不同层上提取的通用描述符的可传递能力已在各种视觉场所识别场景中得到了成功利用。在本文中,我们通过提取中间层的全部输出并通过省略与环境变化相对应的滤镜的激活来构建低维图像描述符来解决此问题。因此,我们能够提高跨季节视觉位置识别的鲁棒性。我们在Nordland数据集上测试了我们的方法,该数据集是迄今为止最大,最具挑战性的数据集,其中包括四个季节的光照和外观变化都很大。实验表明,我们的新方法可以显着提高深度特征的基线(单图像搜索)性能,最高可提高14%。 (c)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号