首页> 外文期刊>Pattern recognition letters >Robust 3D registration of CBCT images aggregating multiple estimates through random sampling
【24h】

Robust 3D registration of CBCT images aggregating multiple estimates through random sampling

机译:通过随机采样对CBCT图像进行强大的3D配准,聚合多个估计值

获取原文
获取原文并翻译 | 示例

摘要

In this work, we propose a novel 3D rigid registration technique, by applying the Conventional Mutual Information based 3D Registration (CMIR) repeatedly in sampled data sets. Using the statistical distribution in the parameter space, we have considered mean, median, and mode of the distribution, and found that the median and mode provide reasonably good estimates. We call the method Robust Rigid Registration by Multiples Estimates in Sampled data points ((RMES)-M-3). It provides higher accuracy than the CMIR technique. When the number of iterations of multiple estimates is kept low, the (RMES)-M-3 technique requires less computation, as it works in the sampled data set. The performance of the (RMES)-M-3 technique is better when the sampling rate is greater than 3%. We present a theoretical validation of this observation, considering uniform sampling with replacement. We also demonstrate its application for registering 3D CBCT image volumes of a colo-rectal cancer patient captured on different days. To demonstrate its general applicability, we present its performance on registering a pair of 3D brain MRI image volumes. (c) 2018 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们通过在采样数据集中重复应用基于常规互信息的3D注册(CMIR),提出了一种新颖的3D刚性注册技术。使用参数空间中的统计分布,我们考虑了分布的均值,中位数和众数,发现中位数和众数提供了合理的估计。我们将采样数据点((RMES)-M-3)中的乘以多次估计的鲁棒刚性配准称为方法。它提供了比CMIR技术更高的精度。当多个估计的迭代次数保持较低时,(RMES)-M-3技术需要较少的计算量,因为它适用于采样数据集。当采样率大于3%时(RMES)-M-3技术的性能会更好。我们考虑到统一抽样与替换,提出了这一观察的理论验证。我们还展示了其在注册在不同日期捕获的结肠直肠癌患者的3D CBCT图像量中的应用。为了证明其普遍适用性,我们介绍了它在配准一对3D脑MRI图像量上的性能。 (c)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号