首页> 外文期刊>Pattern recognition letters >Deep learning with geodesic moments for 3D shape classification
【24h】

Deep learning with geodesic moments for 3D shape classification

机译:带有测地线的深度学习用于3D形状分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a deep learning framework for efficient 3D shape classification using geodesic moments. Our approach inherits many useful properties from the geodesic distance, most notably the capture of the intrinsic geometric structure of 3D shapes and the invariance to isometric deformations. Moreover, we show the similarity between the convergent series of the geodesic moments and the inverse-square eigenvalues of the Laplace-Beltrami operator in the continuous setting. The proposed algorithm uses a two-layer stacked sparse autoencoder to learn deep features from geodesic moments by training the hidden layers individually in an unsupervised fashion, followed by a softmax classifier. Experimental results on three standard 3D shape benchmarks demonstrate superior performance of the proposed approach compared to existing methods. (c) 2017Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种使用测地线矩进行有效3D形状分类的深度学习框架。我们的方法从测地距离继承了许多有用的属性,最值得注意的是捕获了3D形状的固有几何结构以及等轴测变形的不变性。此外,我们证明了在连续设置中,测地矩的收敛系列与Laplace-Beltrami算子的平方反比特征值之间的相似性。所提出的算法使用两层堆叠的稀疏自动编码器,通过以无监督的方式分别训练隐藏层,然后是softmax分类器,从测地矩中学习深度特征。在三个标准3D形状基准上的实验结果表明,与现有方法相比,该方法具有更好的性能。 (c)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号