首页> 外文期刊>Pattern Analysis and Applications >Improved barnacles mating optimizer algorithm for feature selection and support vector machine optimization
【24h】

Improved barnacles mating optimizer algorithm for feature selection and support vector machine optimization

机译:改进的菱形配合优化器算法特征选择和支持向量机优化

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of computer technology, data collection becomes easier, and data object presents more complex. Data analysis method based on machine learning is an important, active, and multi-disciplinarily research field. Support vector machine (SVM) is one of the most powerful and fast classification models. The main challenges SVM faces are the selection of feature subset and the setting of kernel parameters. To improve the performance of SVM, a metaheuristic algorithm is used to optimize them simultaneously. This paper first proposes a novel classification model called IBMO-SVM, which hybridizes an improved barnacle mating optimizer (IBMO) with SVM. Three strategies, including Gaussian mutation, logistic model, and refraction-learning, are used to improve the performance of BMO from different perspectives. Through 23 classical benchmark functions, the impact of control parameters and the effectiveness of introduced strategies are analyzed. The convergence accuracy and stability are the main gains, and exploration and exploitation phases are more properly balanced. We apply IBMO-SVM to 20 real-world datasets, including 4 extremely high-dimensional datasets. Experimental results are compared with 6 state- of-the-art methods in the literature. The final statistical results show that the proposed IBMO-SVM achieves a better performance than the standard BMO-SVM and other compared methods, especially on high-dimensional datasets. In addition, the proposed model also shows significant superiority compared with 4 other classifiers.
机译:随着计算机技术的快速发展,数据收集变得更容易,数据对象具有更复杂的。基于机器学习的数据分析方法是一个重要的,活跃,多学科的研究领域。支持向量机(SVM)是最强大和最快速的分类模型之一。 SVM面的主要挑战是选择特征子集和内核参数的设置。为了提高SVM的性能,使用了一种成群质算法来同时优化它们。本文首先提出了一种名为IBMO-SVM的新型分类模型,其与SVM杂交改进的晶格网配合优化器(IBMO)。三种策略,包括高斯突变,后勤模型和折射学习,用于改善BMO与不同观点的性能。通过23个古典基准功能,分析了控制参数的影响和引入策略的有效性。收敛准确性和稳定性是主要的收益,勘探和剥削阶段更加平衡。我们将ibmo-svm应用于20个现实世界数据集,包括4个非常高维的数据集。将实验结果与文献中的6种最新方法进行比较。最终的统计结果表明,所提出的IBMO-SVM实现比标准BMO-SVM和其他比较方法更好的性能,尤其是在高维数据集上。此外,与4个其他分类器相比,所提出的模型还显示出显着的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号