首页> 外文期刊>Pattern Analysis and Applications >Classification among healthy, mild cognitive impairment and Alzheimer's disease subjects based on wavelet entropy and relative beta and theta power
【24h】

Classification among healthy, mild cognitive impairment and Alzheimer's disease subjects based on wavelet entropy and relative beta and theta power

机译:基于小波熵和相对β和THETA功率的健康,轻度认知障碍和阿尔茨海默病科目的分类

获取原文
获取原文并翻译 | 示例

摘要

Diagnosis of Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy subjects (Healthy) is currently lacking an automated tool. It requires experience of neuropsychologists and has sensibilities of 80% when separating between Healthy and MCI. The aim of this work is to evaluate the performance of a method for classification among the three groups using a database of 17 Healthy, 9 MCI and 15 AD. The method uses wavelet decomposition of the EEG signal (Haar mother wavelet and 5 decomposition levels) to calculate the wavelet entropy and theta and beta relative power of the EEG signal. These features are used as inputs to a three-way classifier consisting in a support vector machine with polynomial kernel and a two-layer neural network. The last implements a vote procedure. Wavelet entropy was evaluated together with the sample entropy and approximated entropy to choose the one that best detected changes in the complexity of the EEG signal. The results show that it is possible to automatically classify a subject of a particular group with an overall accuracy of 92.6%, close to the best result found in the literature that is 97.9%. The method could be the basis for the implementation of a diagnosis-support quantitative tool oriented to aid in clinical diagnosis, especially when the classification between the three groups is not one of the more represented researches in the consulted literature.
机译:目前缺乏自动化工具,诊断阿尔茨海默病(AD),轻度认知障碍(MCI)和健康受试者(健康)。它需要体验神经心理学家,在健康和MCI之间分离时具有80%的敏感性。这项工作的目的是使用17个健康,9个MCI和15个广告的数据库评估三组分类方法的性能。该方法使用EEG信号(HAAR母小波和5分解电平)的小波分解来计算EEG信号的小波熵和θ和β相对功率。这些功能用作三通分类器的输入,该三通分类器由具有多项式内核和双层神经网络的支持向量机组成。最后实现投票过程。小波熵与样本熵和近似熵一起评估,以选择最佳检测到脑电图信号的复杂性变化的熵。结果表明,可以自动分类特定组的主题,整体准确性为92.6%,接近文献中发现的最佳结果,即97.9%。该方法可以是实施诊断支持的定量工具以帮助临床诊断的依据,特别是当三组之间的分类不是咨询文献中更具代表的研究之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号