首页> 外文期刊>Pattern Analysis and Applications >Classifying imbalanced data using BalanceCascade-based kernelized extreme learning machine
【24h】

Classifying imbalanced data using BalanceCascade-based kernelized extreme learning machine

机译:使用基于BalanceCascade的内灵极限学习机进行分类的分类数据

获取原文
获取原文并翻译 | 示例

摘要

Imbalanced learning is one of the substantial challenging problems in the field of data mining. The datasets that have skewed class distribution pose hindrance to conventional learning methods. Conventional learning methods give the same importance to all the examples. This leads to the prediction inclined in favor of the majority classes. To solve this intrinsic deficiency, numerous strategies have been proposed such as weighted extreme learning machine (WELM) and boosting WELM (BWELM). This work designs a novel BalanceCascade-based kernelized extreme learning machine (BCKELM) to tackle the class imbalance problem more effectively. BalanceCascade includes the merits of random undersampling and the ensemble methods. The proposed method utilizes random undersampling to design balanced training subsets. The proposed ensemble generates the base learner in a sequential manner. In each iteration, the correctly classified examples belonging to the majority class are replaced by the other majority class examples to create a new balanced training subset, i.e., the base learners differ in the choice of the balanced training subset. The cardinality of the balanced training subsets depends on the imbalance ratio. This work utilizes a kernelized extreme learning machine (KELM) as the base learner to build the ensemble as it is stable and has good generalization performance. The time complexity of BCKELM is considerably lower in contrast to BWELM, BalanceCascade, EasyEnsemble and hybrid artificial bee colony WELM. The exhaustive experimental evaluation on real-world benchmark datasets demonstrates the efficacy of the proposed method.
机译:不平衡的学习是数据挖掘领域的实质上具有挑战性问题之一。对传统学习方法具有偏斜类分布的数据集。传统的学习方法对所有示例具有相同的重要性。这导致预测倾向于多数类。为解决这种内在缺陷,已经提出了许多策略,例如加权极限学习机(WELM)和升压WELM(BWELM)。这项工作设计了一种基于小说的BaranceCascade的内核极端学习机(Bckelm),以更有效地解决课堂不平衡问题。 BalanceCascade包括随机欠采样和集合方法的优点。所提出的方法利用随机缺乏采样来设计平衡训练子集。所提出的合并以顺序方式生成基础学习者。在每次迭代中,属于多数类的正确分类示例被其他多数类示例所取代,以创建一个新的平衡训练子集,即基本学习者在选择平衡训练子集中的选择。平衡训练子集的基数取决于不平衡率。这项工作利用内核化的极限学习机(KELM)作为基础学习者,以构建合奏,因为它稳定并且具有良好的泛化性能。 Bckelm的时间复杂性与BWELM,BALACCECADE,EASESESEMBELE和Hybrid人造蜂殖民地相比显着降低。真实世界基准数据集的详尽实验评估显示了该方法的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号