首页> 外文期刊>Pattern Analysis and Applications >ML-SLSTSVM: a new structural least square twin support vector machine for multi-label learning
【24h】

ML-SLSTSVM: a new structural least square twin support vector machine for multi-label learning

机译:ML-SLSTSVM:一种用于多标签学习的新型结构最小二乘孪生支持向量机

获取原文
获取原文并翻译 | 示例

摘要

Multi-label learning (MLL) is a special supervised learning task, where any single instance possibly belongs to several classes simultaneously. Nowadays, MLL methods are increasingly required by modern applications, such as protein function classification, speech recognition and textual data classification. In this paper, a structural least square twin support vector machine (SLSTSVM) classifier for multi-label learning is presented. This proposed ML-SLSTSVM focuses on the cluster-based structural information of the corresponding class in each optimization problem, which is vital for designing a good classifier in different real-world problems. This method is extended to a nonlinear version by the kernel trick. Experimental results demonstrate that proposed method is superior in generalization performance to other classifiers.
机译:多标签学习(MLL)是一种特殊的监督学习任务,其中任何单个实例都可能同时属于多个类。如今,现代应用越来越需要MLL方法,例如蛋白质功能分类,语音识别和文本数据分类。本文提出了一种用于多标签学习的结构最小二乘孪生支持向量机(SLSTSVM)分类器。提出的ML-SLSTSVM专注于每个优化问题中相应类的基于聚类的结构信息,这对于设计不同现实问题中的良好分类器至关重要。该方法通过内核技巧扩展为非线性版本。实验结果表明,该方法在泛化性能方面优于其他分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号