首页> 外文期刊>Pattern Analysis and Applications >Rare association rule mining from incremental databases
【24h】

Rare association rule mining from incremental databases

机译:从增量数据库中挖掘稀有关联规则

获取原文
获取原文并翻译 | 示例

摘要

Rare association rule mining is an imperative field of data mining that attempts to identify rare correlations among the items in a database. Although numerous attempts pertaining to rare association rule mining can be found in the literature, there are still certain issues that need utmost attention. The most prominent one among them is the rare association rule mining from incremental databases. The existing rare association rule mining techniques are capable of operating only on static databases, assuming that the entire database to be operated on is available during the outset of the mining process. Inclusion of new records, however, may lead to the generation of some new interesting rules from the current set of data, invalidating the previously extracted significant rare association rules. Executing the entire mining process from scratch for the newly arrived set of data could be a tedious affair. With a view to resolve the issue of incremental rare association rule mining, this study presents a single-pass tree-based approach for extracting rare association rules when new data are inserted into the original database. The proposed approach is capable of generating the complete set of frequent and rare patterns without rescanning the updated database and reconstructing the entire tree structure when new transactions are added to the existent database. Experimental evaluation has been carried out on several benchmark real and synthetic datasets to analyze the efficiency of the proposed approach. Furthermore, to assess its applicability in real-world applications, experimental analysis has been performed on a real geological dataset where earthquake records are incrementally being added on an annual basis. Comparative performance analysis demonstrates the preeminence of proposed approach over existing frequent and rare association rule mining techniques.
机译:稀有关联规则挖掘是数据挖掘的重要领域,它试图识别数据库中各项之间的稀有关联。尽管在文献中可以找到许多与稀有关联规则挖掘有关的尝试,但是仍然需要特别注意某些问题。其中最突出的一项是从增量数据库中进行稀有关联规则挖掘。现有的稀有关联规则挖掘技术只能在静态数据库上运行,前提是要在挖掘过程开始时使用整个数据库进行操作。但是,包含新记录可能会导致从当前数据集中生成一些新的有趣规则,从而使先前提取的重要稀有关联规则无效。从头开始对新到达的数据集执行整个挖掘过程可能是一件乏味的事情。为了解决增量稀有关联规则挖掘的问题,本研究提出了一种在将新数据插入原始数据库时提取稀有关联规则的基于单遍树的方法。当将新事务添加到现有数据库时,所提出的方法能够生成完整的频繁和稀有模式集,而无需重新扫描更新的数据库并重建整个树结构。实验评估已在几个基准真实和合成数据集上进行,以分析所提出方法的效率。此外,为了评估其在实际应用中的适用性,已对真实的地质数据集进行了实验分析,在该数据集中,每年逐年增加地震记录。比较性能分析表明,与现有的频繁和稀有关联规则挖掘技术相比,所提出的方法更具优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号