首页> 外文期刊>Pattern Analysis and Applications >Automatic computing of number of clusters for color image segmentation employing fuzzy c-means by extracting chromaticity features of colors
【24h】

Automatic computing of number of clusters for color image segmentation employing fuzzy c-means by extracting chromaticity features of colors

机译:通过提取颜色的色度特征,使用模糊c-均值自动计算用于彩色图像分割的簇数

获取原文
获取原文并翻译 | 示例

摘要

In this paper we introduce a method for color image segmentation by computing automatically the number of clusters the data, pixels, are divided into using fuzzy c-means. In several works the number of clusters is defined by the user. In other ones the number of clusters is computed by obtaining the number of dominant colors, which is determined with unsupervised neural networks (NN) trained with the image's colors; the number of dominant colors is defined by the number of the most activated neurons. The drawbacks with this approach are as follows: (1) The NN must be trained every time a new image is given and (2) despite employing different color spaces, the intensity data of colors are used, so the undesired effects of non-uniform illumination may affect computing the number of dominant colors. Our proposal consists in processing the images with an unsupervised NN trained previously with chromaticity samples of different colors; the number of the neurons with the highest activation occurrences defines the number of clusters the image is segmented. By training the NN with chromatic data of colors it can be employed to process any image without training it again, and our approach is, to some extent, robust to non-uniform illumination. We perform experiments with the images of the Berkeley segmentation database, using competitive NN and self-organizing maps; we compute and compare the quantitative evaluation of the segmented images obtained with related works using the probabilistic random index and variation of information metrics.
机译:在本文中,我们介绍了一种通过自动计算使用模糊c均值将数据,像素分为的簇数来进行彩色图像分割的方法。在一些作品中,簇的数量由用户定义。在其他情况下,通过获取主要颜色的数量来计算聚类的数量,主要颜色的数量由训练有图像颜色的无监督神经网络(NN)确定;显色的数量由最活跃的神经元的数量定义。这种方法的缺点如下:(1)每次给出新图像时都必须对NN进行训练;(2)尽管采用了不同的色彩空间,但仍使用色彩的强度数据,因此产生了不均匀的不良影响照明可能会影响计算主色的数量。我们的建议是使用无监督的NN处理图像,该NN先前经过训练,并带有不同颜色的色度样本。具有最高激活次数的神经元的数量定义了图像被分割的簇的数量。通过用颜色的色度数据训练NN,可以将其用于处理任何图像而无需再次训练它,并且我们的方法在某种程度上对非均匀照明具有鲁棒性。我们使用竞争性NN和自组织图对Berkeley细分数据库的图像进行实验;我们使用概率随机指数和信息量度的变化来计算和比较与相关作品获得的分割图像的定量评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号