首页> 外文期刊>Pattern Analysis and Applications >A new F-score gradient-based training rule for the linear model
【24h】

A new F-score gradient-based training rule for the linear model

机译:一种新的基于F分数梯度的线性模型训练规则

获取原文
获取原文并翻译 | 示例

摘要

Delta rule is a standard, well-established approach to train perceptron recognition model. However, mean squared error, on which it is based, is not suitable estimate for some problems, like information retrieval or automatic data annotation. F-score, a combination of precision and recall, is one of the major quality measures and can be used as an alternative. In this paper we present perceptron training model based on f-score. An approximate of f-score is proposed, based on components which are both continuous and differentiable. It allows to formulate a gradient-descent training routine, conceptually similar to the standard delta rule.
机译:Delta规则是训练感知器识别模型的标准且行之有效的方法。但是,基于它的均方误差不适用于某些问题的估计,例如信息检索或自动数据注释。 F评分是精度和召回率的结合,是主要的质量衡量指标之一,可以用作替代指标。在本文中,我们提出了基于f分数的感知器训练模型。基于连续且可微的分量,提出了近似的f分数。它允许制定梯度下降训练程序,在概念上类似于标准增量规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号