首页> 外文期刊>Neural processing letters >Gradient-Based Training of Gaussian Mixture Models for High-Dimensional Streaming Data
【24h】

Gradient-Based Training of Gaussian Mixture Models for High-Dimensional Streaming Data

机译:基于梯度的高斯混合模型的高斯流模型训练

获取原文
获取原文并翻译 | 示例

摘要

We present an approach for efficiently training Gaussian Mixture Model (GMM) by Stochastic Gradient Descent (SGD) with non-stationary, high-dimensional streaming data. Our training scheme does not require data-driven parameter initialization (e.g., k-means) and can thus be trained based on a random initial state. Furthermore, the approach allows mini-batch sizes as low as 1, which are typical for streaming-data settings. Major problems in such settings are undesirable local optima during early training phases and numerical instabilities due to high data dimensionalities. We introduce an adaptive annealing procedure to address the first problem, whereas numerical instabilities are eliminated by an exponential-free approximation to the standard GMM log-likelihood. Experiments on a variety of visual and non-visual benchmarks show that our SGD approach can be trained completely without, for instance, k-means based centroid initialization. It also compares favorably to an online variant of Expectation-Maximization (EM)-stochastic EM (sEM), which it outperforms by a large margin for very high-dimensional data.
机译:我们提出了一种通过随机梯度下降(SGD)有效地训练高斯混合模型(GMM),具有非静止的高维流数据。我们的训练方案不需要数据驱动参数初始化(例如,k均值),因此可以基于随机初始状态训练。此外,该方法允许迷你批量大小为低至1,这对于流数据设置是典型的。由于高数据尺寸,在早期训练阶段和数值不稳定期间,这种设置中的主要问题是不希望的本地Optima。我们介绍了一个自适应退火程序来解决第一个问题,而数值不稳定性被标准GMM日志可能性的无指数近似消除。关于各种视觉和非视觉基准的实验表明,我们的SGD方法可以完全培训,例如基于K-Meast的质心初始化。它还对期望最大化(EM)的在线变体(EM)的在线变体也相比,它超越了非常高维数据的大余量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号