首页> 外文期刊>Pattern Analysis and Applications >A deep neural network and rule-based technique for fire risk identification in video frames
【24h】

A deep neural network and rule-based technique for fire risk identification in video frames

机译:一种深度神经网络和基于规则的视频帧火灾风险识别技术

获取原文
获取原文并翻译 | 示例

摘要

Automatically monitoring roadside fire risk plays a significant role in ensuring road safety by reducing potential hazards imposed to vehicle drivers and enabling effective roadside vegetation management. However, little work has been conducted in this field using video data collected by vehicle-mounted cameras. In this paper, a novel approach is proposed for roadside fire risk identification based on the biomass of grasses. Inspired by the biomass measurement method by human in grass curing, the proposed approach predicts the biomass and identifies high-risk regions using threshold-based rules based on two site-specific parameters of roadside grassesbrown grass coverage (BGC) and height (BGH). The BGC is calculated as the percentage of brown grass pixels in a sampling region, while the BGH is predicted based on the connectivity characteristics of grass stems along the vertical direction. To further reduce the false alarm rate of fire risk, we additionally incorporate and compare two deep learning techniques, including autoencoder and convolutional neural network, for refining the results. Our approach shows high performance of combining threshold-based rules with deep neural networks in classifying low and high fire risk on a roadside image dataset from video collected by the Department of Transport and Main Roads, Queensland, Australia.
机译:自动监控路边火灾风险通过减少对车辆驾驶员的潜在危害并实现有效的路边植被管理,在确保道路安全方面发挥着重要作用。但是,使用车载摄像机收集的视频数据在该领域进行的工作很少。本文提出了一种基于草地生物量的路边火灾风险识别新方法。受人类在草皮固化过程中生物量测量方法的启发,该方法可基于路边草棕色草覆盖率(BGC)和身高(BGH)的两个特定地点参数,使用基于阈值的规则来预测生物量并识别高风险区域。 BGC计算为采样区域中棕色草像素的百分比,而BGH是基于草茎沿垂直方向的连接特性预测的。为了进一步降低火灾风险的误报率,我们还结合并比较了两种深度学习技术,包括自动编码器和卷积神经网络,以完善结果。我们的方法显示出将基于阈值的规则与深度神经网络相结合的高性能,可以根据澳大利亚昆士兰州运输和主要道路局收集的视频对路边图像数据集上的低火危险和高火危险进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号