首页> 外文期刊>Pattern Analysis and Applications >Human action recognition in videos based on the Transferable Belief Model: Application to athletics jumps
【24h】

Human action recognition in videos based on the Transferable Belief Model: Application to athletics jumps

机译:基于可转移信念模型的视频中的人类动作识别:在田径比赛中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on human behavior recognition where the main problem is to bridge the semantic gap between the analogue observations of the real world and the symbolic world of human interpretation. For that, a fusion architecture based on the Transferable Belief Model framework is proposed and applied to action recognition of an athlete in video sequences of athletics meeting with moving camera. Relevant features are extracted from videos, based on both the camera motion analysis and the tracking of particular points on the athlete's silhouette. Some models of interpretation are used to link the numerical features to the symbols to be recognized, which are running, jumping and falling actions. A Temporal Belief Filter is then used to improve the robustness of action recognition. The proposed approach demonstrates good performance when tested on real videos of athletics sports videos (high jumps, pole vaults, triple jumps and long jumps) acquired by a moving camera and different view angles. The proposed system is also compared to Bayesian Networks.
机译:本文着重于人类行为识别,其中主要问题是弥合现实世界的模拟观察与人类解释的符号世界之间的语义鸿沟。为此,提出了一种基于可转移信念模型框架的融合体系结构,并将其应用于运动员运动视频与运动摄像机的视频序列中的动作识别。基于摄像机运动分析和运动员轮廓上特定点的跟踪,从视频中提取相关特征。一些解释模型用于将数字特征链接到要识别的符号,这些符号是运行,跳跃和下降动作。然后,使用时间信念过滤器来提高动作识别的鲁棒性。当在由移动摄像机和不同视角拍摄的田径运动视频的真实视频(跳高,撑竿跳高,三级跳远和跳远)的真实视频上进行测试时,提出的方法表现出良好的性能。所提出的系统也与贝叶斯网络进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号