首页> 外文期刊>Pattern Analysis and Applications >A fast SVM-based wrapper feature selection method driven by a fuzzy complementary criterion
【24h】

A fast SVM-based wrapper feature selection method driven by a fuzzy complementary criterion

机译:基于模糊互补准则的基于SVM的快速包装特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

The selection of informative and non-redundant features has become a prominent step in pattern classification. However, despite the intensive research, it is still an open issue to identify valuable feature subsets, especially in highly dimensional feature spaces. This paper proposes a wrapper feature selection method, in the context of support vector machines (SVMs), named Wr-SVM-FuzCoC. Our method combines effectively the advantages of the wrapper and filter approaches, achieving three goals simultaneously: classification performance, dimensionality reduction, and computational efficiency. In the filter part, a forward feature search methodology is developed, driven by a fuzzy complementary criterion, whereby at each iteration a feature is selected that exhibits the maximum additional contribution in regard to the previously selected subset. The quality of single features or feature subsets is assessed via a fuzzy local evaluation criterion with respect to patterns. This is achieved by the so-called fuzzy partition vector (FPV), comprising the fuzzy membership grades of every pattern in their target classes. Derivation of the feature FPVs is accomplished by incorporating a fuzzy output kernel-based support vector machine. The proposed method is favorably compared with existing SVM-based wrapper methods, in terms of performance capability and computational speed. Experimental investigation is carried out using a diverse pool of real datasets, including moderate and high-dimensional feature spaces.
机译:信息性和非冗余特征的选择已成为模式分类中的重要步骤。然而,尽管进行了深入的研究,但是识别有价值的特征子集仍然是一个悬而未决的问题,尤其是在高维特征空间中。本文在支持向量机(SVM)的背景下提出了一种包装特征选择方法,称为Wr-SVM-FuzCoC。我们的方法有效地结合了包装器和过滤器方法的优点,同时实现了三个目标:分类性能,降维和计算效率。在过滤器部分,开发了一种前向特征搜索方法,该方法由模糊互补准则驱动,从而在每次迭代中选择一个特征,该特征相对于先前选择的子集表现出最大的附加贡献。单个特征或特征子集的质量通过关于模式的模糊局部评估标准进行评估。这是通过所谓的模糊分区矢量(FPV)实现的,该矢量包括其目标类别中每个模式的模糊隶属度。通过结合基于模糊输出核的支持向量机来完成特征FPV的推导。就性能和计算速度而言,该方法与现有的基于SVM的包装方法相比具有优势。实验研究是使用各种实际数据集(包括中度和高维特征空间)进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号