首页> 外文期刊>Pattern Analysis and Applications >Real-time vision-based eye state detection for driver alertness monitoring
【24h】

Real-time vision-based eye state detection for driver alertness monitoring

机译:基于视觉的实时眼睛状态检测,用于驾驶员警觉性监控

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a real-time vision-based system to detect the eye state. The system is implemented with a consumer-grade computer and an uncalibrated web camera with passive illumination. Previously established similarity measures between image regions, feature selection algorithms, and classifiers have been applied to achieve vision-based eye state detection without introducing a new methodology. From many different extracted data of 1,293 pair of eyes images and 2,322 individual eye images, such as histograms, projections, and contours, 186 similarity measures with three eye templates were computed. Two feature selection algorithms, the J_5(ξ) criterion and sequential forward selection, and two classifiers, multi-layer perceptron and support vector machine, were intensively studied to select the best scheme for pair of eyes and individual eye state detection. The output of both the selected classifiers was combined to optimize eye state monitoring in video sequences. We tested the system with videos with different users, environments, and illumination. It achieved an overall accuracy of 96.22 %, which outperforms previously published approaches. The system runs at 40 fps and can be used to monitor driver alertness robustly.
机译:本文提出了一种基于视觉的实时系统来检测眼睛状态。该系统由一台消费级计算机和一个带有无源照明的未经校准的网络摄像机实现。先前在图像区域,特征选择算法和分类器之间建立的相似性度量已应用于实现基于视觉的眼睛状态检测,而没有引入新的方法。从1,293对眼睛图像和2,322个单独眼睛图像(例如直方图,投影和轮廓)的许多不同提取数据中,计算出具有三个眼睛模板的186个相似度度量。深入研究了两个特征选择算法J_5(ξ)准则和顺序正向选择,以及两个分类器(多层感知器和支持向量机),以选择用于双眼和个体眼睛状态检测的最佳方案。将两个选定分类器的输出进行组合,以优化视频序列中的眼睛状态监视。我们用具有不同用户,环境和照明的视频测试了该系统。它实现了96.22%的总体准确度,优于以前发布的方法。该系统以40 fps的速度运行,可用于强大地监视驾驶员的机敏性。

著录项

  • 来源
    《Pattern Analysis and Applications》 |2013年第3期|285-306|共22页
  • 作者单位

    Department of Signal Theory and Communications and Telematics Engineering, Telecommunications Engineering School, University of Valladolid, Paseo de Belen n 15, 47011 Valladolid, Spain;

    Department of Signal Theory and Communications and Telematics Engineering, Telecommunications Engineering School, University of Valladolid, Paseo de Belen n 15, 47011 Valladolid, Spain;

    Department of Signal Theory and Communications and Telematics Engineering, Telecommunications Engineering School, University of Valladolid, Paseo de Belen n 15, 47011 Valladolid, Spain;

    Department of Signal Theory and Communications and Telematics Engineering, Telecommunications Engineering School, University of Valladolid, Paseo de Belen n 15, 47011 Valladolid, Spain;

    Department of Signal Theory and Communications and Telematics Engineering, Telecommunications Engineering School, University of Valladolid, Paseo de Belen n 15, 47011 Valladolid, Spain;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Eye state detection; Multi-layer perceptron (MLP); Support vector machine (SVM); Feature selection; Driver alertness monitoring;

    机译:眼睛状态检测;多层感知器(MLP);支持向量机(SVM);功能选择;驾驶员警觉性监控;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号