首页> 外文期刊>Pattern Analysis and Applications >An evolutionary decoding method for HMM-based continuous speech recognition systems using particle swarm optimization
【24h】

An evolutionary decoding method for HMM-based continuous speech recognition systems using particle swarm optimization

机译:基于粒子群算法的基于HMM的连续语音识别系统的进化解码方法

获取原文
获取原文并翻译 | 示例

摘要

The main recognition procedure in modern HMM-based continuous speech recognition systems is Viterbi algorithm. Viterbi algorithm finds out the best acoustic sequence according to input speech in the search space using dynamic programming. In this paper, dynamic programming is replaced by a search method which is based on particle swarm optimization. The major idea is focused on generating initial population of particles as the speech segmentation vectors. The particles try to achieve the best segmentation by an updating method during iterations. In this paper, a new method of particles representation and recognition process is introduced which is consistent with the nature of continuous speech recognition. The idea was tested on bi-phone recognition and continuous speech recognition workbenches and the results show that the proposed search method reaches the performance of the Viterbi segmentation algorithm ; however, there is a slight degradation in the accuracy rate.
机译:现代基于HMM的连续语音识别系统中的主要识别过程是Viterbi算法。维特比算法使用动态规划根据搜索空间中的输入语音找出最佳声学序列。在本文中,动态规划被基于粒子群优化的搜索方法所取代。主要思想集中在生成粒子的初始填充作为语音分割向量。粒子尝试在迭代过程中通过更新方法来实现最佳分割。本文介绍了一种与连续语音识别的性质相一致的新的粒子表示与识别方法。在双电话识别和连续语音识别工作台上对该思想进行了测试,结果表明所提出的搜索方法达到了维特比分割算法的性能;但是,准确率略有下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号