首页> 外文期刊>Pattern Analysis and Applications >Scribble-based object segmentation with modified gaussian mixture models
【24h】

Scribble-based object segmentation with modified gaussian mixture models

机译:带有修正高斯混合模型的基于涂抹的对象分割

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an interactive segmentation method, designed to help the user to extract an object of interest from an image. The proposed approach adopts the scribble-based segmentation paradigm. The user interaction consists of specifying a set of lines, corresponding to both foreground and background scribbles. The segmentation process is based on color distributions, estimated with Gaussian mixture models (GMM). We show that such a technique presents some limitations when dealing with compressed images, even for relatively high quality compression factors: in this case, blocking artifacts may degrade the segmentation results. In order to overcome such a drawback, a modified GMM model, which re-shapes the Gaussian mixture based on the eigenvalues of the GMM components, is proposed. The experimental evaluation, carried out on a corpus of various images with different characteristics and textures, demonstrates the superiority of the modified GMM model which is able to appropriately take into account compression artifacts.
机译:在本文中,我们提出了一种交互式分割方法,旨在帮助用户从图像中提取感兴趣的对象。所提出的方法采用基于涂抹的分割范例。用户交互包括指定一组线,分别对应于前景和背景涂鸦。分割过程基于使用高斯混合模型(GMM)估计的颜色分布。我们证明了这种技术在处理压缩图像时也存在一些局限性,即使对于较高质量的压缩因子也是如此:在这种情况下,块状伪像可能会降低分割结果。为了克服这种缺点,提出了一种改进的GMM模型,其基于GMM分量的特征值来对高斯混合进行整形。对具有不同特征和纹理的各种图像的语料库进行的实验评估证明了改进的GMM模型的优越性,该模型能够适当考虑压缩伪影。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号