首页> 外文期刊>Pattern Analysis and Applications >A clustered locally linear approach on face manifolds for pose estimation
【24h】

A clustered locally linear approach on face manifolds for pose estimation

机译:面部流形上的聚类局部线性方法用于姿势估计

获取原文
获取原文并翻译 | 示例

摘要

Data points with small variations between them are assumed to lie close to each other on a smooth varying manifold in the feature space. Such data are hard to classify into separate classes . A sequence of face pose images with closely varying pose angles can be considered as such data. The pose angles when large enough create images that are largely differing from each other, and thus, the sequence of face images can be assumed to be on or near a nonlinear manifold. In this paper, we propose an unsupervised pose estimation method for face images based on clustered locally linear manifolds using discriminant analysis. We divide the data into multiple disjointed, locally linear and separable clusters. The problem of identifying which cluster to use is solved by dividing the entire process into two steps. The first step or projection using the entire smooth manifold identifies a rough region of interest. We use clustering techniques on entire data to form the pose-dependent classes which are then used to find the first set of discriminant functions. The second step or second projection uses trained cluster(s) from this neighbourhood to obtain a second set of discriminant functions. The idea behind such an approach is that the local neighbourhood would be linear and provide better between-class separation, and hence, the classification problem would now be simpler.
机译:假设它们之间的变化很小的数据点在特征空间中的平滑变化流形上彼此靠近。这样的数据很难分为不同的类别。具有紧密变化的姿势角的一系列面部姿势图像可以被认为是这样的数据。姿势角足够大时,会产生彼此差异很大的图像,因此,可以将面部图像序列假定为位于非线性流形上或附近。本文提出了一种基于判别分析的基于聚类局部线性流形的人脸图像无监督姿态估计方法。我们将数据分为多个不相交,局部线性和可分离的簇。通过将整个过程分为两个步骤,可以解决确定使用哪个群集的问题。使用整个平滑流形的第一步或投影将确定感兴趣的粗糙区域。我们对整个数据使用聚类技术以形成与姿势相关的类,然后使用这些类来查找第一组判别函数。第二步骤或第二投影使用来自该邻域的训练过的聚类来获得第二组判别函数。这种方法背后的想法是,局部邻域将是线性的,并提供更好的类间分隔,因此,分类问题现在将更简单。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号