首页> 外文期刊>Pattern Analysis and Applications >Locally adaptive k parameter selection for nearest neighbor classifier: one nearest cluster
【24h】

Locally adaptive k parameter selection for nearest neighbor classifier: one nearest cluster

机译:最近邻居分类器的局部自适应k参数选择:一个最近的簇

获取原文
获取原文并翻译 | 示例

摘要

The k nearest neighbors (k-NN) classification technique has a worldly wide fame due to its simplicity, effectiveness, and robustness. As a lazy learner, k-NN is a versatile algorithm and is used in many fields. In this classifier, the k parameter is generally chosen by the user, and the optimal k value is found by experiments. The chosen constant k value is used during the whole classification phase. The same k value used for each test sample can decrease the overall prediction performance. The optimal k value for each test sample should vary from others in order to have more accurate predictions. In this study, a dynamic k value selection method for each instance is proposed. This improved classification method employs a simple clustering procedure. In the experiments, more accurate results are found. The reasons of success have also been understood and presented.
机译:k最近邻(k-NN)分类技术因其简单性,有效性和鲁棒性而享誉全球。作为懒惰的学习者,k-NN是一种通用算法,已在许多领域中使用。在该分类器中,通常由用户选择k参数,并通过实验找到最佳k值。所选的常数k值将在整个分类阶段使用。用于每个测试样本的相同k值会降低整体预测​​性能。每个测试样本的最佳k值应与其他样本不同,以便获得更准确的预测。在这项研究中,提出了一种针对每个实例的动态k值选择方法。这种改进的分类方法采用了简单的聚类过程。在实验中,发现了更准确的结果。成功的原因也已被理解和介绍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号