首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild
【24h】

GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild

机译:GOT-10K:野外泛型对象跟踪的大型高度分集基准

获取原文
获取原文并翻译 | 示例

摘要

We introduce here a large tracking database that offers an unprecedentedly wide coverage of common moving objects in the wild, called GOT-10k. Specifically, GOT-10k is built upon the backbone of WordNet structure [1] and it populates the majority of over 560 classes of moving objects and 87 motion patterns, magnitudes wider than the most recent similar-scale counterparts [19], [20], [23], [26]. By releasing the large high-diversity database, we aim to provide a unified training and evaluation platform for the development of class-agnostic, generic purposed short-term trackers. The features of GOT-10k and the contributions of this article are summarized in the following. (1) GOT-10k offers over 10,000 video segments with more than 1.5 million manually labeled bounding boxes, enabling unified training and stable evaluation of deep trackers. (2) GOT-10k is by far the first video trajectory dataset that uses the semantic hierarchy of WordNet to guide class population, which ensures a comprehensive and relatively unbiased coverage of diverse moving objects. (3) For the first time, GOT-10k introduces the one-shot protocol for tracker evaluation, where the training and test classes are zero-overlapped. The protocol avoids biased evaluation results towards familiar objects and it promotes generalization in tracker development. (4) GOT-10k offers additional labels such as motion classes and object visible ratios, facilitating the development of motion-aware and occlusion-aware trackers. (5) We conduct extensive tracking experiments with 39 typical tracking algorithms and their variants on GOT-10k and analyze their results in this paper. (6) Finally, we develop a comprehensive platform for the tracking community that offers full-featured evaluation toolkits, an online evaluation server, and a responsive leaderboard. The annotations of GOT-10k's test data are kept private to avoid tuning parameters on it.
机译:我们在这里介绍了一个大型跟踪数据库,可以在野外普遍存在的普通移动物体覆盖,称为GOT-10K。具体而言,GOT-10K建立在Wordnet结构的骨干上[1],它填充了超过560级的移动物体和87个运动模式的大多数,大小宽于最新类似级别的对应物[19],[20] ,[23],[26]。通过释放大型高多样性数据库,我们的目标是为开发类别无话,通用的短期跟踪仪提供统一的培训和评估平台。 GOT-10K的功能和本文的贡献在下面综述。 (1)Got-10K提供超过10,000多个视频段,手动标记的边界框超过150万,使统一的培训和稳定的深度跟踪器评估。 (2)GOT-10K是迄今为止的第一视频轨迹数据集,它使用Wordnet的语义层次结构来指导课堂群体,这确保了各种移动物体的全面和相对无偏见的覆盖范围。 (3)GOT-10K介绍了跟踪器评估的单次协议,其中培训和测试类是零重叠的。该协议避免了偏见的评估结果对熟悉的物体,它促进了跟踪器开发中的概括。 (4)GOT-10K提供了额外的标签,如运动类和对象可见比率,促进了运动感知和遮挡感知跟踪器的开发。 (5)我们对39种典型跟踪算法进行了广泛的跟踪实验及其在GOT-10K上的变体,并在本文中分析它们的结果。 (6)最后,我们为跟踪社区开发了一个全面的平台,提供全功能评估工具包,在线评估服务器和响应式排行榜。 GOT-10K的测试数据的注释保密以避免调整参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号