首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Hierarchical Long Short-Term Concurrent Memory for Human Interaction Recognition
【24h】

Hierarchical Long Short-Term Concurrent Memory for Human Interaction Recognition

机译:用于人类交互识别的分层长期短期并发内存

获取原文
获取原文并翻译 | 示例

摘要

In this work, we aim to address the problem of human interaction recognition in videos by exploring the long-term inter-related dynamics among multiple persons. Recently, Long Short-Term Memory (LSTM) has become a popular choice to model individual dynamic for single-person action recognition due to its ability to capture the temporal motion information in a range. However, most existing LSTM-based methods focus only on capturing the dynamics of human interaction by simply combining all dynamics of individuals or modeling them as a whole. Such methods neglect the inter-related dynamics of how human interactions change over time. To this end, we propose a novel Hierarchical Long Short-Term Concurrent Memory (H-LSTCM) to model the long-term inter-related dynamics among a group of persons for recognizing human interactions. Specifically, we first feed each person's static features into a Single-Person LSTM to model the single-person dynamic. Subsequently, at one time step, the outputs of all Single-Person LSTM units are fed into a novel Concurrent LSTM (Co-LSTM) unit, which mainly consists of multiple sub-memory units, a new cell gate, and a new co-memory cell. In the Co-LSTM unit, each sub-memory unit stores individual motion information, while this Co-LSTM unit selectively integrates and stores inter-related motion information between multiple interacting persons from multiple sub-memory units via the cell gate and co-memory cell, respectively. Extensive experiments on several public datasets validate the effectiveness of the proposed H-LSTCM by comparing against baseline and state-of-the-art methods.
机译:在这项工作中,我们旨在通过探索多人之间的长期与相关动态来解决视频中的人类交互识别问题。最近,长期内存(LSTM)由于其能够在范围内捕获时间运动信息而成为单人动作识别的个人动态,因此成为一种流行的选择。然而,基于最现有的基于LSTM的方法仅侧重于捕获人类交互的动态,只需将个人的所有动态组合或整体建模它们即可捕获人类交互的动态。这些方法忽略了与人类相互作用随时间随时间变化的相关性动态。为此,我们提出了一种新颖的分层长期短期并发内存(H-LSTCM),以模拟一组人员之间的长期与识别人类交互的关系。具体而言,我们首先将每个人的静态功能送入一个人的LSTM以模拟单人动态。随后,在一次步骤中,所有单人LSTM单元的输出被馈送到新颖的并发LSTM(CO-LSTM)单元中,主要由多个子存储器单元,新的单元格门和新的共同组成记忆单元。在CO-LSTM单元中,每个子存储器单元存储各个运动信息,而该CO-LSTM单元通过单元格栅和共存储器选择性地集成和存储来自多个子存储器单元的多个交互人员之间的相关运动信息细胞分别。关于几个公共数据集的广泛实验通过与基线和最先进的方法进行比较来验证所提出的H-LSTCM的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号