首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >SafePredict: A Meta-Algorithm for Machine Learning That Uses Refusals to Guarantee Correctness
【24h】

SafePredict: A Meta-Algorithm for Machine Learning That Uses Refusals to Guarantee Correctness

机译:Safepredict:用于机器学习的元算法,用于保证正确性的拒绝

获取原文
获取原文并翻译 | 示例

摘要

SafePredict is a novel meta-algorithm that works with any base prediction algorithm for online data to guarantee an arbitrarily chosen correctness rate, 1 - epsilon, by allowing refusals. Allowing refusals means that the meta-algorithm may refuse to emit a prediction produced by the base algorithm so that the error rate on non-refused predictions does not exceed epsilon. The SafePredict error bound does not rely on any assumptions on the data distribution or the base predictor. When the base predictor happens not to exceed the target error rate epsilon, SafePredict refuses only a finite number of times. When the error rate of the base predictor changes through time SafePredict makes use of a weight-shifting heuristic that adapts to these changes without knowing when the changes occur yet still maintains the correctness guarantee. Empirical results show that (i) SafePredict compares favorably with state-of-the-art confidence-based refusal mechanisms which fail to offer robust error guarantees; and (ii) combining SafePredict with such refusal mechanisms can in many cases further reduce the number of refusals. Our software is included in the supplementary material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2019.2932415.
机译:Safepredict是一种新的META算法,其适用于用于在线数据的任何基础预测算法,以保证通过允许拒绝来保证任意选择的正确性率1 - epsilon。允许拒绝意味着元算法可以拒绝发出由基本算法产生的预测,使得非拒绝预测的错误率不超过epsilon。 Safepredict错误绑定不依赖于数据分发或基本预测器上的任何假设。当基本预测器发生不超过目标错误率epsilon时,Safepredict仅拒绝有限次数。当基本预测器的错误率通过时间通过时间变化时,SafePredict利用权重驱发态,其在不知道发生变化时仍然保持正确性保证的情况下适应这些变化。经验结果表明,(i)Safeprictict与最先进的基于信心的拒绝机制有利地比较,这未能提供强大的错误保证; (ii)在许多情况下,将SafePreDict与此类拒绝机制相结合,进一步减少了拒绝数量。我们的软件包含在补充材料中,可以在Computer Society Digital Library在http://do.ieeecomputersociety.org/10.1109/tpami.2019.2932415上找到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号