首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Stereo Matching Using Multi-Level Cost Volume and Multi-Scale Feature Constancy
【24h】

Stereo Matching Using Multi-Level Cost Volume and Multi-Scale Feature Constancy

机译:立体匹配使用多级成本卷和多尺度功能恒定

获取原文
获取原文并翻译 | 示例

摘要

For CNNs based stereo matching methods, cost volumes play an important role in achieving good matching accuracy. In this paper, we present an end-to-end trainable convolution neural network to fully use cost volumes for stereo matching. Our network consists of three sub-modules, i.e., shared feature extraction, initial disparity estimation, and disparity refinement. Cost volumes are calculated at multiple levels using the shared features, and are used in both initial disparity estimation and disparity refinement sub-modules. To improve the efficiency of disparity refinement, multi-scale feature constancy is introduced to measure the correctness of the initial disparity in feature space. These sub-modules of our network are tightly-coupled, making it compact and easy to train. Moreover, we investigate the problem of developing a robust model to perform well across multiple datasets with different characteristics. We achieve this by introducing a two-stage finetuning scheme to gently transfer the model to target datasets. Specifically, in the first stage, the model is finetuned using both a large synthetic dataset and the target datasets with a relatively large learning rate, while in the second stage the model is trained using only the target datasets with a small learning rate. The proposed method is tested on several benchmarks including the Middlebury 2014, KITTI 2015, ETH3D 2017, and SceneFlow datasets. Experimental results show that our method achieves the state-of-the-art performance on all the datasets. The proposed method also won the 1st prize on the Stereo task of Robust Vision Challenge 2018.
机译:对于基于CNNS的立体声匹配方法,成本卷在实现良好的匹配精度方面发挥着重要作用。在本文中,我们提出了一个端到端的培训卷积神经网络,以满足立体匹配的成本卷。我们的网络由三个子模块组成,即共享特征提取,初始视差估计和差异细化。使用共享功能在多个级别计算成本卷,并用于初始视差估计和差异细化子模块。为了提高差距细化的效率,引入多尺度特征恒定来测量特征空间中初始差异的正确性。我们网络的这些子模块紧密耦合,使其紧凑且易于训练。此外,我们调查开发强大模型的问题,以在具有不同特征的多个数据集中执行良好的问题。我们通过引入两级FineTuning方案来实现这一目标,以便将模型轻轻地将模型转换为目标数据集。具体地,在第一阶段,使用大的合成数据集和具有相对较大的学习速率的目标数据集来掺入模型,而在第二阶段中仅使用具有小的学习率的目标数据集进行培训。该方法在包括Middrbury 2014,Kitti 2015,Eth3D 2017和SceneFlow Datasets的几个基准测试中进行了测试。实验结果表明,我们的方法在所有数据集中实现了最先进的性能。该方法还赢得了2018年强大的愿景挑战的立体任务第一奖。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号