首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Novel Dynamic Model Capturing Spatial and Temporal Patterns for Facial Expression Analysis
【24h】

A Novel Dynamic Model Capturing Spatial and Temporal Patterns for Facial Expression Analysis

机译:一种新型动态模型捕获面部表情分析的空间和时间模式

获取原文
获取原文并翻译 | 示例

摘要

Facial expression analysis could be greatly improved by incorporating spatial and temporal patterns present in facial behavior, but the patterns have not yet been utilized to their full advantage. We remedy this via a novel dynamic model-an interval temporal restricted Boltzmann machine (IT-RBM) - that is able to capture both universal spatial patterns and complicated temporal patterns in facial behavior for facial expression analysis. We regard a facial expression as a multifarious activity composed of sequential or overlapping primitive facial events. Allen's interval algebra is implemented to portray these complicated temporal patterns via a two-layer Bayesian network. The nodes in the upper-most layer are representative of the primitive facial events, and the nodes in the lower layer depict the temporal relationships between those events. Our model also captures inherent universal spatial patterns via a multi-value restricted Boltzmann machine in which the visible nodes are facial events, and the connections between hidden and visible nodes model intrinsic spatial patterns. Efficient learning and inference algorithms are proposed. Experiments on posed and spontaneous expression distinction and expression recognition demonstrate that our proposed IT-RBM achieves superior performance compared to state-of-the art research due to its ability to incorporate these facial behavior patterns.
机译:通过包含面部行为中存在的空间和时间模式,可以大大提高面部表情分析,但尚未利用它们的完全优势。我们通过新型动态模型 - 一个间隔时间限制Boltzmann机器(IT-RBM)来弥补这一点 - 能够在面部表情分析中捕获面部行为中的通用空间模式和复杂的时间模式。我们将面部表达视为由顺序或重叠原始面部事件组成的多种活动。艾伦的间隔代数被实施以通过双层贝叶斯网络描绘这些复杂的时间模式。大多数层中的节点代表了基本面部事件,下层中的节点描绘了这些事件之间的时间关系。我们的模型还通过多值限制Boltzmann机器捕获固有的通用空间模式,其中可见节点是面部事件,以及隐藏和可见节点之间的连接模型内部空间模式。提出了高效的学习和推理算法。构成和自发性表达的实验区别和表达识别表明,由于能够纳入这些面部行为模式,我们提出的IT-RBM与最先进的研究相比,实现了卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号