首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences
【24h】

Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences

机译:从RGB-D序列学习和跟踪自由移动婴儿的3D体形

获取原文
获取原文并翻译 | 示例

摘要

Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.
机译:人体表面的统计模型通常从预定义的姿势中获取数千个高质量的3D扫描,以覆盖各种人体形状和铰接。收购此类数据需要昂贵的设备,校准程序,并且仅限于能够理解和遵循成年人的指示的合作科目。我们提出了一种从自由移动婴儿的不完整,低质量的RGB-D序列学习统计3D皮肤多婴幼儿线性体型(SMIL)的方法。定量实验表明,SMIL忠实地代表RGB-D数据,并适当地分解婴儿的形状和姿势。为了证明SMIL的适用性,我们将模型与自由移动婴儿的RGB-D序列符合,并用案例研究表明,我们的方法捕获了足够的运动细节进行通用运动评估(GMA),这是一种用于临床实践的方法早期检测婴儿神经发育障碍。 SMIL为分析婴幼儿和运动提供了一种新工具,并且是迈向GMA自动化系统的一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号