首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Learning Depth with Convolutional Spatial Propagation Network
【24h】

Learning Depth with Convolutional Spatial Propagation Network

机译:与卷积空间传播网络学习深度

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose the convolutional spatial propagation network (CSPN) and demonstrate its effectiveness for various depth estimation tasks. CSPN is a simple and efficient linear propagation model, where the propagation is performed with a manner of recurrent convolutional operations, in which the affinity among neighboring pixels is learned through a deep convolutional neural network (CNN). Compare to the previous state-of-the-art (SOTA) linear propagation model, i.e., spatial propagation networks (SPN), CSPN is 2 to 5x faster in practice. We concatenate CSPN and its variants to SOTA depth estimation networks, which significantly improve the depth accuracy. Specifically, we apply CSPN to two depth estimation problems: depth completion and stereo matching, in which we design modules which adapts the original 2D CSPN to embed sparse depth samples during the propagation, operate with 3D convolution and be synergistic with spatial pyramid pooling. In our experiments, we show that all these modules contribute to the final performance. For the task of depth completion, our method reduce the depth error over 30 percent in the NYU v2 and KITTI datasets. For the task of stereo matching, our method currently ranks 1st on both the KITTI Stereo 2012 and 2015 benchmarks.
机译:在本文中,我们提出了卷积空间传播网络(CSPN)并展示了其对各种深度估计任务的有效性。 CSPN是一种简单且有效的线性传播模型,其中以经常性卷积操作的方式执行传播,其中通过深卷积神经网络(CNN)学习相邻像素之间的亲和力。与以前的最先进的(SOTA)线性传播模型进行比较,即空间传播网络(SPN),在实践中更快2至5倍。我们将CSPN及其变体连接到SOTA深度估计网络,从而显着提高了深度精度。具体而言,我们将CSPN应用于两个深度估计问题:深度完成和立体匹配,其中我们设计模块,该模块适应原始的2D CSPN以在传播期间嵌入稀疏深度样本,使用3D卷积操作,并具有空间金字塔池的协同作用。在我们的实验中,我们表明所有这些模块都有助于最终表现。对于深度完成的任务,我们的方法将在NYU V2和Kitti数据集中减少30%以上的深度误差。对于立体声匹配的任务,我们的方法目前在Kitti Stereo 2012和2015年基准测试中排名第一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号