首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Unsupervised Learning of a Hierarchical Spiking Neural Network for Optical Flow Estimation: From Events to Global Motion Perception
【24h】

Unsupervised Learning of a Hierarchical Spiking Neural Network for Optical Flow Estimation: From Events to Global Motion Perception

机译:对光学流量估计的分层尖峰神经网络的无监督学习:从事件到全球运动感知

获取原文
获取原文并翻译 | 示例

摘要

The combination of spiking neural networks and event-based vision sensors holds the potential of highly efficient and high-bandwidth optical flow estimation. This paper presents the first hierarchical spiking architecture in which motion (direction and speed) selectivity emerges in an unsupervised fashion from the raw stimuli generated with an event-based camera. A novel adaptive neuron model and stable spike-timing-dependent plasticity formulation are at the core of this neural network governing its spike-based processing and learning, respectively. After convergence, the neural architecture exhibits the main properties of biological visual motion systems, namely feature extraction and local and global motion perception. Convolutional layers with input synapses characterized by single and multiple transmission delays are employed for feature and local motion perception, respectively; while global motion selectivity emerges in a final fully-connected layer. The proposed solution is validated using synthetic and real event sequences. Along with this paper, we provide the cuSNN library, a framework that enables GPU-accelerated simulations of large-scale spiking neural networks. Source code and samples are available at https://github.com/tudelft/cuSNN.
机译:尖峰神经网络和基于事件的视觉传感器的组合具有高效和高带宽光流量估计的潜力。本文介绍了第一层级尖峰架构,其中从基于事件的相机产生的原始刺激,运动(方向和速度)选择性以无监督的方式出现。一种新型的自适应神经元模型和稳定的峰值定时塑性塑性配方在这个神经网络的核心中,分别管理其尖峰的加工和学习。收敛后,神经结构表现出生物视觉运动系统的主要特性,即特征提取和局部和全球运动感知。具有单个和多个传输延迟特征的输入突触的卷积层分别用于特征和局部运动感知;虽然全球运动选择性在最终完全连接的层中出现。使用合成和实际事件序列验证所提出的解决方案。除此纸张外,我们提供CUSNN图书馆,这是一个框架,使GPU加速模拟大规模尖峰神经网络。源代码和样本可在https://github.com/tudelft/cusnn上获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号