首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Motion-Guided Cascaded Refinement Network for Video Object Segmentation
【24h】

Motion-Guided Cascaded Refinement Network for Video Object Segmentation

机译:用于视频对象分割的运动引导级联细化网络

获取原文
获取原文并翻译 | 示例

摘要

In this work, we propose a motion-guided cascaded refinement network for video object segmentation. By assuming the foreground objects show different motion patterns from the background, for each video frame we apply an active contour model on optical flow to coarsely segment the foreground. The proposed Cascaded Refinement Network (CRN) then takes as guidance the coarse segmentation to generate an accurate segmentation in full resolution. In this way, the motion information and the deep CNNs can complement each other well to accurately segment the foreground objects from video frames. To deal with multi-instance cases, we extend our method with a spatial-temporal instance embedding model that further segments the foreground regions into instances and propagates instance labels. We further introduce a single-channel residual attention module in CRN to incorporate the coarse segmentation map as attention, which makes the network effective and efficient in both training and testing. We perform experiments on popular benchmarks and the results show that our method achieves state-of-the-art performance with high time efficiency.
机译:在这项工作中,我们提出了一个用于视频对象分割的运动引导的级联细化网络。通过假设前景对象从背景中示出了不同的运动模式,对于每个视频帧,我们在光学流上应用活动轮廓模型以粗略地段段。然后,所提出的级联细化网络(CRN)随着粗略分割的指导,以完全分辨率生成准确的分段。以这种方式,运动信息和深CNN可以彼此相互补充,以便精确地将前景对象段从视频帧分段。要处理多实例案例,我们将使用空间时间实例嵌入模型扩展了我们的方法,该模型进一步将前景地区分段为实例并传播实例标签。我们进一步在CRN中引入了单通道残差注意模块,将粗略分割图作为注意力结合在一起,这使得网络在训练和测试方面有效和高效。我们对流行的基准进行实验,结果表明,我们的方法具有高时间效率实现最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号