首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Simultaneous optimal segmentation and model estimation of nonstationary noisy images
【24h】

Simultaneous optimal segmentation and model estimation of nonstationary noisy images

机译:非平稳噪声图像的同时最优分割和模型估计

获取原文
获取原文并翻译 | 示例

摘要

The authors present the class of semi-Markov random fields and deal, in particular, with the subclass of discrete-valued, nonsymmetric half-plane, unilateral Markov random fields. A hierarchical nonstationary-mean nonstationary-variance (NMNV) image model is proposed for the modeling of nonstationary and noisy images. This model seems to be advantageous as compared to a regular NMNV model because it statistically incorporates the correlation between pixels around the boundary of two adjacent regions. The hierarchical NMNV model leads to the development of an optimal algorithm that allows the simultaneous segmentation and model estimation of measured images. Although no theoretical result is available for the consistency of the estimated model parameters, the method seems to work sufficiently well for the examples considered.
机译:作者介绍了半马尔可夫随机场的类别,尤其涉及离散值,非对称半平面单边马尔可夫随机场的子类。提出了一种分层的非平稳均值非平稳方差(NMNV)图像模型,用于对非平稳和嘈杂的图像进行建模。与常规的NMNV模型相比,该模型似乎是有利的,因为它统计地合并了两个相邻区域边界周围的像素之间的相关性。分层的NMNV模型导致了一种最佳算法的发展,该算法允许同时对测量图像进行分割和模型估计。尽管没有理论结果可用于估计的模型参数的一致性,但是对于所考虑的示例,该方法似乎效果很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号