首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >CAD-based computer vision: from CAD models to relational graphs
【24h】

CAD-based computer vision: from CAD models to relational graphs

机译:基于CAD的计算机视觉:从CAD模型到关系图

获取原文
获取原文并翻译 | 示例

摘要

The topic of model-building for 3-D objects is examined. Most 3-D object recognition systems construct models either manually or by training. Neither approach has been very satisfactory, particularly in designing object recognition systems which can handle a large number of objects. Recent interest in integrating mechanical CAD systems and vision systems has led to a third type of model building for vision: adaptation of preexisting CAD models of objects for recognition. If a solid model of an object to be recognized is already available in a manufacturing database, then it should be possible to infer automatically a model appropriate for vision tasks from the manufacturing model. Such a system has been developed. It uses 3-D object descriptions created on a commercial CAD system and expressed in both the industry-standard IGES form and a polyhedral approximation and performs geometric inferencing to obtain a relational graph representation of the object which can be stored in a database of models for object recognition. Relational graph models contain both view-independent information extracted from the IGES description and view-dependent information (patch areas) extracted from synthetic views of the object. It is argued that such a system is needed to efficiently create a large database (more than 100 objects) of 3-D models to evaluate matching strategies.
机译:研究了3-D对象的模型构建主题。大多数3D对象识别系统都可以手动或通过训练来构建模型。两种方法都不是非常令人满意的,特别是在设计可以处理大量物体的物体识别系统中。对集成机械CAD系统和视觉系统的最新兴趣导致了视觉建模的第三种类型:修改对象的已有CAD模型以进行识别。如果要识别的对象的实体模型已经在制造数据库中可用,则应该可以从制造模型中自动推断出适合视觉任务的模型。已经开发了这样的系统。它使用在商用CAD系统上创建并以行业标准IGES形式和多面近似表示的3-D对象描述,并执行几何推断以获得对象的关系图表示形式,该关系图表示形式可以存储在模型数据库中对象识别。关系图模型既包含从IGES描述中提取的与视图无关的信息,又包含从对象的综合视图中提取的与视图相关的信息(补丁区域)。有人认为,需要这样一个系统来有效地创建一个大型的3D模型数据库(超过100个对象)以评估匹配策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号